Suppr超能文献

利用扩散加权成像(DIAMOND)表征各向异性微观结构环境的分布。

Characterizing the distribution of anisotropic micro-structural environments with diffusion-weighted imaging (DIAMOND).

作者信息

Scherrer Benoit, Schwartzman Armin, Taquet Maxime, Prabhu Sanjay P, Sahin Mustafa, Akhondi-Asl Alireza, Warfield Simon K

机构信息

Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.

Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.

出版信息

Med Image Comput Comput Assist Interv. 2013;16(Pt 3):518-26. doi: 10.1007/978-3-642-40760-4_65.

Abstract

Diffusion-weighted imaging (DWI) enables investigation of the brain microstructure by probing natural barriers to diffusion in tissues. In this work, we propose a novel generative model of the DW signal based on considerations of the tissue microstructure that gives rise to the diffusion attenuation. We consider that the DW signal can be described as the sum of a large number of individual homogeneous spin packets, each of them undergoing local 3-D Gaussian diffusion represented by a diffusion tensor. We consider that each voxel contains a number of large scale microstructural environments and describe each of them via a matrix-variate Gamma distribution of spin packets. Our novel model of DIstribution of Anisotropic MicrOstructural eNvironments in DWI (DIAMOND) is derived from first principles. It enables characterization of the extra-cellular space, of each individual white matter fascicle in each voxel and provides a novel measure of the microstructure heterogeneity. We determine the number of fascicles at each voxel with a novel model selection framework based upon the minimization of the generalization error. We evaluate our approach with numerous in-vivo experiments, with cross-testing and with pathological DW-MRI. We show that DIAMOND may provide novel biomarkers that captures the tissue integrity.

摘要

扩散加权成像(DWI)通过探测组织中扩散的天然屏障来研究脑微观结构。在这项工作中,我们基于对导致扩散衰减的组织微观结构的考虑,提出了一种新的DW信号生成模型。我们认为DW信号可以描述为大量单个均匀自旋包的总和,每个自旋包都经历由扩散张量表示的局部三维高斯扩散。我们认为每个体素包含多个大尺度微观结构环境,并通过自旋包的矩阵变量伽马分布来描述它们。我们的DWI中各向异性微观结构环境分布新模型(DIAMOND)是从第一原理推导出来的。它能够表征细胞外空间、每个体素中每个单独的白质束,并提供微观结构异质性的新度量。我们使用基于泛化误差最小化的新型模型选择框架确定每个体素处的束数。我们通过大量体内实验、交叉测试和病理性DW-MRI评估我们的方法。我们表明DIAMOND可能提供捕捉组织完整性的新型生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/142b/4029840/6c5612756dfd/nihms565120f1.jpg

相似文献

2
A generative model for resolution enhancement of diffusion MRI data.一种用于扩散磁共振成像数据分辨率增强的生成模型。
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):527-34. doi: 10.1007/978-3-642-40760-4_66.
6
MesoFT: unifying diffusion modelling and fiber tracking.MesoFT:统一扩散建模与纤维追踪
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):201-8. doi: 10.1007/978-3-319-10443-0_26.
9
A prototype representation to approximate white matter bundles with weighted currents.一种用加权电流近似白质束的原型表示。
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):289-96. doi: 10.1007/978-3-319-10443-0_37.

引用本文的文献

3
Joint RElaxation-Diffusion Imaging Moments to Probe Neurite Microstructure.关节弛豫-扩散成像矩法探测神经突微结构。
IEEE Trans Med Imaging. 2020 Mar;39(3):668-677. doi: 10.1109/TMI.2019.2933982. Epub 2019 Aug 8.
10
Multi-shell diffusion signal recovery from sparse measurements.从稀疏测量中恢复多壳扩散信号
Med Image Anal. 2014 Oct;18(7):1143-56. doi: 10.1016/j.media.2014.06.003. Epub 2014 Jul 5.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验