Taquet Maxime, Scherrer Benoit, Boumal Nicolas, Peters Jurriaan M, Macq Benoit, Warfield Simon K
Computational Radiology Laboratory, Boston Children's Hospital, Harvard Medical School, Wolbach 215, 300 Longwood Avenue, Boston, MA 02115, USA; ICTEAM Institute, Université catholique de Louvain, Avenue Georges Lemaitre, 4, B-1348 Louvain-la-Neuve, Belgium.
Computational Radiology Laboratory, Boston Children's Hospital, Harvard Medical School, Wolbach 215, 300 Longwood Avenue, Boston, MA 02115, USA.
Med Image Anal. 2015 Dec;26(1):268-86. doi: 10.1016/j.media.2015.10.004. Epub 2015 Oct 22.
Diffusion weighted imaging (DWI) is sensitive to alterations in the diffusion of water molecules caused by microstructural barriers. Different microstructural compartments are characterized by differences in DWI signal. Diffusion tensor imaging conflates the signal from these compartments into a single tensor, which poorly represents multiple white matter fascicles and extra-axonal space. Diffusion compartment imaging (DCI) models overcome this limitation by providing parametric representations for the signal contribution of each compartment, thereby improving the fidelity of brain microstructure mapping. However, current approaches fail to identify DCI model parameters from conventional single-shell DWI with the desired accuracy. It has been demonstrated that part of this inaccuracy is due to the ill-posedness of the estimation of DCI model parameters from conventional single-shell acquisitions. In this paper, we propose to regularize the estimation problem for single-shell DWI by learning a prior distribution of DCI model parameters from DWI acquired at multiple b-values in an external population of subjects. We demonstrate that this population-informed prior enables, for the first time, accurate estimation of DCI models from single-shell DWI typically acquired in clinical practice. We validated our approach on synthetic and in vivo data of healthy subjects and patients with autism spectrum disorder. We applied the approach to population studies of brain microstructure in autism and found that introducing a population-informed prior leads to reliable detection of group differences. Our algorithm enables novel investigation from large existing DWI datasets in normal development and in disease and injury.
扩散加权成像(DWI)对由微观结构屏障引起的水分子扩散变化敏感。不同的微观结构区室具有不同的DWI信号特征。扩散张量成像将来自这些区室的信号合并为一个单一张量,这不能很好地表示多个白质束和轴突外空间。扩散区室成像(DCI)模型通过为每个区室的信号贡献提供参数表示来克服这一局限性,从而提高脑微观结构映射的保真度。然而,目前的方法无法以所需的精度从传统的单壳DWI中识别DCI模型参数。已经证明,这种不准确性部分是由于从传统单壳采集中估计DCI模型参数的不适定性。在本文中,我们建议通过从外部受试者群体中在多个b值下采集的DWI中学习DCI模型参数的先验分布,来对单壳DWI的估计问题进行正则化。我们证明,这种群体信息先验首次使得能够从临床实践中通常采集的单壳DWI中准确估计DCI模型。我们在健康受试者和自闭症谱系障碍患者的合成数据和体内数据上验证了我们的方法。我们将该方法应用于自闭症脑微观结构的群体研究,发现引入群体信息先验能够可靠地检测组间差异。我们的算法能够对正常发育以及疾病和损伤中现有的大型DWI数据集进行新的研究。