Suppr超能文献

通过树突预测躯体发放进行学习。

Learning by the dendritic prediction of somatic spiking.

机构信息

Department of Physiology, and Center for Learning, Cognition and Memory, University of Bern, Bühlplatz 5, CH-3012 Bern, Switzerland.

Department of Physiology, and Center for Learning, Cognition and Memory, University of Bern, Bühlplatz 5, CH-3012 Bern, Switzerland.

出版信息

Neuron. 2014 Feb 5;81(3):521-8. doi: 10.1016/j.neuron.2013.11.030.

Abstract

Recent modeling of spike-timing-dependent plasticity indicates that plasticity involves as a third factor a local dendritic potential, besides pre- and postsynaptic firing times. We present a simple compartmental neuron model together with a non-Hebbian, biologically plausible learning rule for dendritic synapses where plasticity is modulated by these three factors. In functional terms, the rule seeks to minimize discrepancies between somatic firings and a local dendritic potential. Such prediction errors can arise in our model from stochastic fluctuations as well as from synaptic input, which directly targets the soma. Depending on the nature of this direct input, our plasticity rule subserves supervised or unsupervised learning. When a reward signal modulates the learning rate, reinforcement learning results. Hence a single plasticity rule supports diverse learning paradigms.

摘要

最近的尖峰时间依赖可塑性模型表明,除了突触前和突触后放电时间外,可塑性还涉及第三个因素,即局部树突电位。我们提出了一个简单的胞体神经元模型,以及一个用于树突突触的非赫布式、具有生物学意义的学习规则,其中可塑性由这三个因素调节。从功能上讲,该规则旨在最小化体核放电和局部树突电位之间的差异。在我们的模型中,这种预测误差可以来自随机波动,也可以来自直接针对体核的突触输入。根据这种直接输入的性质,我们的可塑性规则可以支持监督学习或无监督学习。当奖励信号调节学习率时,就会产生强化学习。因此,单个可塑性规则支持多种学习模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验