Suppr超能文献

构建一个新的基于 Rasch 的抑郁自评量表。

Building a new Rasch-based self-report inventory of depression.

机构信息

DiSPUTer, Department of Psychological Sciences, Humanities and Territory, "G d'Annunzio" University, Chieti-Pescara, Italy.

Department of Economics and Statistics, "Federico-II" University, Naples, Italy.

出版信息

Neuropsychiatr Dis Treat. 2014 Jan 28;10:153-65. doi: 10.2147/NDT.S53425. eCollection 2014.

Abstract

This paper illustrates a sequential item development process to create a new self-report instrument of depression refined with Rasch analysis from a larger pool of potential diagnostic items elicited through a consensus approach by clinical experts according to the latest edition of the Diagnostic and Statistical Manual of Mental Disorders criteria for major depression. A 51-item pool was administered to a sample of 529 subjects (300 healthy community-dwelling adults and 229 psychiatric outpatients). Item selection resulted in a 21-item set, named the Teate Depression Inventory, with an excellent Person Separation Index and no evidence of bias due to an item-trait interaction (χ (2)=147.71; df =168; P=0.48). Additional support for the unidimensionality, local independence, appropriateness of the response format, and discrimination ability between clinical and nonclinical subjects was provided. No substantial differential item functioning by sex was observed. The Teate Depression Inventory shows considerable promise as a unidimensional tool for the screening of depression. Finally, advantages and disadvantages of this methodology will be discussed in terms of subsequent possible mathematical analyses, statistical tests, and implications for clinical investigations.

摘要

本文阐述了一个顺序项目开发过程,该过程使用 Rasch 分析从通过临床专家共识方法从更大的潜在诊断项目池中提取的、符合最新版《精神障碍诊断与统计手册》(DSM-5)重性抑郁障碍标准的项目中,精炼出一个新的抑郁自评量表。一个包含 51 个项目的量表被应用于 529 名受试者(300 名健康社区成年人和 229 名精神科门诊患者)。项目选择产生了一个 21 项的量表,命名为 Teate 抑郁量表,具有优秀的个体分离指数,且不存在由于项目-特质相互作用而导致的偏差的证据(χ(2)=147.71;df=168;P=0.48)。该量表还提供了对维度性、局部独立性、反应格式适当性以及区分临床和非临床受试者的能力的额外支持。没有观察到性别对项目功能的实质性差异。Teate 抑郁量表作为一种用于筛查抑郁的单维度工具具有很大的潜力。最后,将根据随后的可能的数学分析、统计检验以及对临床研究的影响来讨论这种方法的优缺点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验