Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University , Xi'an 710032, China.
J Phys Chem B. 2014 Feb 27;118(8):2009-19. doi: 10.1021/jp409778e. Epub 2014 Feb 19.
The transcriptional coactivator and histone acetyltransferase (HAT) p300 acetylates the four core histones and other transcription factors to regulate a plethora of fundamental biological processes including cell growth, development, oncogenesis and apoptosis. Recent structural and biochemical studies on the p300 HAT domain revealed a Theorell-Chance, or "hit-and-run", catalytic mechanism. Nonetheless, the chemical mechanism of the entire reaction process including the proton transfer (PT) scheme and consequent acetylation reaction route remains unclear. In this study, a combined computational strategy consisting of molecular modeling, molecular dynamic (MD) simulation, and quantum mechanics/molecular mechanics (QM/MM) simulation was applied to elucidate these important issues. An initial p300/H3/Ac-CoA complex structure was modeled and optimized using a 100 ns MD simulation. Residues that play important roles in substrate binding and the acetylation reaction were comprehensively investigated. For the first time, these studies reveal a plausible PT scheme consisting of Y1394, D1507, and a conserved crystallographic water molecule, with all components of the scheme being stable during the MD simulation and the energy barrier low for PT to occur. The two-dimensional potential energy surface for the nucleophilic attack process was also calculated. The comparison of potential energies for two possible elimination half-reaction mechanisms revealed that Y1467 reprotonates the coenzyme-A leaving group to form product. This study provides new insights into the detailed catalytic mechanism of p300 and has important implications for the discovery of novel small molecule regulators for p300.
转录共激活因子和组蛋白乙酰转移酶(HAT)p300 乙酰化四个核心组蛋白和其他转录因子,以调节包括细胞生长、发育、肿瘤发生和凋亡在内的大量基本生物学过程。最近对 p300 HAT 结构域的结构和生化研究揭示了一种 Theorell-Chance,或“命中-逃离”催化机制。尽管如此,整个反应过程的化学机制,包括质子转移(PT)方案和随后的乙酰化反应途径仍然不清楚。在这项研究中,应用了一种组合计算策略,包括分子建模、分子动力学(MD)模拟和量子力学/分子力学(QM/MM)模拟,以阐明这些重要问题。使用 100 ns MD 模拟对 p300/H3/Ac-CoA 复合物的初始结构进行建模和优化。综合研究了在底物结合和乙酰化反应中起重要作用的残基。这些研究首次揭示了一个合理的 PT 方案,该方案由 Y1394、D1507 和一个保守的晶体学水分子组成,方案中的所有成分在 MD 模拟过程中都是稳定的,并且 PT 发生的能量障碍较低。还计算了亲核攻击过程的二维势能表面。对两种可能的消除半反应机制的势能比较表明,Y1467 重新质子化辅酶-A 离去基团以形成产物。这项研究为 p300 的详细催化机制提供了新的见解,并对发现新型小分子 p300 调节剂具有重要意义。