Suppr超能文献

生物现象的参数估计:一种无味卡尔曼滤波方法。

Parameter estimation of biological phenomena: an unscented Kalman filter approach.

机构信息

Department, Qatar University, Doha, Qatar.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2013 Mar-Apr;10(2):537-43. doi: 10.1109/TCBB.2013.19.

Abstract

Recent advances in high-throughput technologies for biological data acquisition have spurred a broad interest in the construction of mathematical models for biological phenomena. The development of such mathematical models relies on the estimation of unknown parameters of the system using the time-course profiles of different metabolites in the system. One of the main challenges in the parameter estimation of biological phenomena is the fact that the number of unknown parameters is much more than the number of metabolites in the system. Moreover, the available metabolite measurements are corrupted by noise. In this paper, a new parameter estimation algorithm is developed based on the stochastic estimation framework for nonlinear systems, namely the unscented Kalman filter (UKF). A new iterative UKF algorithm with covariance resetting is developed in which the UKF algorithm is applied iteratively to the available noisy time profiles of the metabolites. The proposed estimation algorithm is applied to noisy time-course data synthetically produced from a generic branched pathway as well as real time-course profile for the Cad system of E. coli. The simulation results demonstrate the effectiveness of the proposed scheme.

摘要

近年来,高通量技术在生物数据获取方面的进展,激发了人们广泛的兴趣,促使人们构建用于生物现象的数学模型。这类数学模型的发展依赖于使用系统中不同代谢物的时程曲线来估计系统中未知参数。在生物现象的参数估计中,主要面临的挑战之一是,未知参数的数量远远多于系统中的代谢物数量。此外,可用的代谢物测量值受到噪声的干扰。本文基于非线性系统的随机估计框架,即无迹卡尔曼滤波器(UKF),开发了一种新的参数估计算法。开发了一种具有协方差重置的新的迭代 UKF 算法,其中 UKF 算法被迭代地应用于可用的代谢物的噪声时程曲线。将所提出的估计算法应用于从通用分支途径综合产生的噪声时程数据以及大肠杆菌 Cad 系统的真实时程曲线。仿真结果表明了所提出方案的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验