Suppr超能文献

用于太阳能燃料的整体式电池。

Monolithic cells for solar fuels.

机构信息

KU Leuven, Centre for Surface Chemistry and Catalysis, Kasteelpark Arenberg 23/2461, B-3001 Leuven, Belgium.

出版信息

Chem Soc Rev. 2014 Dec 7;43(23):7963-81. doi: 10.1039/c3cs60424a.

Abstract

Hybrid energy generation models based on a variety of alternative energy supply technologies are considered the best way to cope with the depletion of fossil energy resources and to limit global warming. One of the currently missing technologies is the mimic of natural photosynthesis to convert carbon dioxide and water into chemical fuel using sunlight. This idea has been around for decades, but artificial photosynthesis of organic molecules is still far away from providing real-world solutions. The scientific challenge is to perform in an efficient way the multi-electron transfer reactions of water oxidation and carbon dioxide reduction using holes and single electrons generated in an illuminated semiconductor. In this tutorial review the design of photoelectrochemical (PEC) cells that combine solar water oxidation and CO2 reduction is discussed. In such PEC cells simultaneous transport and efficient use of light, electrons, protons and molecules has to be managed. It is explained how efficiency can be gained by compartmentalisation of the water oxidation and CO2 reduction processes by proton exchange membranes, and monolithic concepts of artificial leaves and solar membranes are presented. Besides transferring protons from the anode to the cathode compartment the membrane serves as a molecular barrier material to prevent cross-over of oxygen and fuel molecules. Innovative nano-organized multimaterials will be needed to realise practical artificial photosynthesis devices. This review provides an overview of synthesis techniques which could be used to realise monolithic multifunctional membrane-electrode assemblies, such as Layer-by-Layer (LbL) deposition, Atomic Layer Deposition (ALD), and porous silicon (porSi) engineering. Advances in modelling approaches, electrochemical techniques and in situ spectroscopies to characterise overall PEC cell performance are discussed.

摘要

基于各种替代能源供应技术的混合能源发电模型被认为是应对化石能源枯竭和限制全球变暖的最佳方法。目前缺失的技术之一是模拟自然光合作用,利用阳光将二氧化碳和水转化为化学燃料。这个想法已经存在了几十年,但有机分子的人工光合作用仍远未提供实际的解决方案。科学挑战是以有效的方式进行水氧化和二氧化碳还原的多电子转移反应,使用在被照射的半导体中产生的空穴和单电子。在本教程综述中,讨论了结合太阳能水氧化和 CO2 还原的光电化学(PEC)电池的设计。在这种 PEC 电池中,必须管理光、电子、质子和分子的同时传输和有效利用。通过质子交换膜将水氧化和 CO2 还原过程分区化,可以解释如何获得效率,并且介绍了人工叶子和太阳能膜的整体概念。除了将质子从阳极转移到阴极室之外,该膜还作为分子阻挡材料,以防止氧气和燃料分子的交叉。需要创新的纳米组织多材料来实现实用的人工光合作用器件。本综述提供了可用于实现整体多功能膜电极组件的合成技术概述,例如层层(LbL)沉积、原子层沉积(ALD)和多孔硅(porSi)工程。还讨论了用于表征整体 PEC 电池性能的建模方法、电化学技术和原位光谱学的进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验