Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
Nat Commun. 2023 Jun 6;14(1):3141. doi: 10.1038/s41467-023-38676-2.
Human deep space exploration is presented with multiple challenges, such as the reliable, efficient and sustainable operation of life support systems. The production and recycling of oxygen, carbon dioxide (CO) and fuels are hereby key, as a resource resupply will not be possible. Photoelectrochemical (PEC) devices are investigated for the light-assisted production of hydrogen and carbon-based fuels from CO within the green energy transition on Earth. Their monolithic design and the sole reliance on solar energy makes them attractive for applications in space. Here, we establish the framework to evaluate PEC device performances on Moon and Mars. We present a refined Martian solar irradiance spectrum and establish the thermodynamic and realistic efficiency limits of solar-driven lunar water-splitting and Martian carbon dioxide reduction (COR) devices. Finally, we discuss the technological viability of PEC devices in space by assessing the performance combined with solar concentrator devices and explore their fabrication via in-situ resource utilization.
人类深空探索面临着多重挑战,例如生命支持系统的可靠、高效和可持续运行。因此,氧气、二氧化碳(CO)和燃料的生产和再循环是关键,因为不可能进行资源补给。光电化学(PEC)设备在地球的绿色能源转型中,用于研究利用光辅助从 CO 中生产氢气和碳基燃料。PEC 设备的整体设计和对太阳能的单一依赖,使它们成为空间应用的理想选择。在这里,我们建立了在月球和火星上评估 PEC 设备性能的框架。我们提出了一个经过改进的火星太阳辐照度谱,并建立了太阳能驱动的月球水分解和火星二氧化碳还原(COR)设备的热力学和实际效率极限。最后,我们通过评估与太阳能集中器设备相结合的性能来讨论空间中 PEC 设备的技术可行性,并探索通过原位资源利用来制造 PEC 设备。