Suppr超能文献

揭示复杂随机生化网络的隐藏结构。

Unveiling the hidden structure of complex stochastic biochemical networks.

机构信息

Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, 14424 Potsdam, Germany.

Department of Chemistry, Rice University, Houston, Texas 77005, USA.

出版信息

J Chem Phys. 2014 Feb 14;140(6):064101. doi: 10.1063/1.4863997.

Abstract

Complex Markov models are widely used and powerful predictive tools to analyze stochastic biochemical processes. However, when the network of states is unknown, it is necessary to extract information from the data to partially build the network and estimate the values of the rates. The short-time behavior of the first-passage time distributions between two states in linear chains has been shown recently to behave as a power of time with an exponent equal to the number of intermediate states. For a general Markov model we derive the complete Taylor expansion of the first-passage time distribution between two arbitrary states. By combining algebraic methods and graph theory approaches it is shown that the first term of the Taylor expansion is determined by the shortest path from the initial state to the final state. When this path is unique, we prove that the coefficient of the first term can be written in terms of the product of the transition rates along the path. It is argued that the application of our results to first-return times may be used to estimate the dependence of rates on external parameters in experimentally measured time distributions.

摘要

复杂的马尔可夫模型被广泛用于分析随机生化过程,是一种非常强大的预测工具。然而,当状态网络未知时,就需要从数据中提取信息来部分构建网络并估计速率值。最近已经证明,在线性链中两个状态之间的首次通过时间分布的短时间行为随时间呈幂次变化,指数等于中间状态的数量。对于一般的马尔可夫模型,我们推导出了两个任意状态之间的首次通过时间分布的完整泰勒展开式。通过结合代数方法和图论方法,我们证明了泰勒展开式的第一项由从初始状态到最终状态的最短路径决定。当这条路径是唯一的时候,我们证明第一项的系数可以表示为路径上的转移速率的乘积。本文认为,我们的结果在首次返回时间上的应用可用于估计实验测量的时间分布中速率对外部参数的依赖性。

相似文献

4
Comparison Theorems for Stochastic Chemical Reaction Networks.随机化学反应网络的比较定理。
Bull Math Biol. 2023 Mar 31;85(5):39. doi: 10.1007/s11538-023-01136-5.
8
Path summation formulation of the master equation.主方程的路径求和公式
Phys Rev Lett. 2006 Jun 2;96(21):210602. doi: 10.1103/PhysRevLett.96.210602. Epub 2006 Jun 1.

引用本文的文献

1
Inferring phenomenological models of first passage processes.推断首通过程的现象学模型。
PLoS Comput Biol. 2021 Mar 5;17(3):e1008740. doi: 10.1371/journal.pcbi.1008740. eCollection 2021 Mar.
2
Direct detection of molecular intermediates from first-passage times.通过首次通过时间直接检测分子中间体。
Sci Adv. 2020 May 1;6(18):eaaz4642. doi: 10.1126/sciadv.aaz4642. eCollection 2020 May.
5
Stochastic kinetics on networks: when slow is fast.网络上的随机动力学:慢即快。
J Phys Chem B. 2014 Sep 4;118(35):10419-25. doi: 10.1021/jp506668a. Epub 2014 Aug 27.

本文引用的文献

4
Kinesin's network of chemomechanical motor cycles.驱动蛋白的化学机械运动循环网络。
Phys Rev Lett. 2007 Jun 22;98(25):258102. doi: 10.1103/PhysRevLett.98.258102. Epub 2007 Jun 20.
5
Molecular motors: a theorist's perspective.分子马达:一位理论家的视角
Annu Rev Phys Chem. 2007;58:675-95. doi: 10.1146/annurev.physchem.58.032806.104532.
7
Understanding mechanochemical coupling in kinesins using first-passage-time processes.利用首次通过时间过程理解驱动蛋白中的机械化学偶联。
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Mar;71(3 Pt 1):031902. doi: 10.1103/PhysRevE.71.031902. Epub 2005 Mar 8.
8
Mechanics of the kinesin step.驱动蛋白步移的力学原理。
Nature. 2005 May 19;435(7040):308-12. doi: 10.1038/nature03528.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验