Loeckx Dirk, Maes Frederik, Vandermeulen Dirk, Suetens Paul
Medical Image Computing (Radiology-ESAT/PSI), Faculties of Medicine and Engineering, University Hospital Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
Inf Process Med Imaging. 2003 Jul;18:463-74. doi: 10.1007/978-3-540-45087-0_39.
We propose a statistical spline deformation model (SSDM) as a method to solve non-rigid image registration. Within this model, the deformation is expressed using a statistically trained B-spline deformation mesh. The model is trained by principal component analysis of a training set. This approach allows to reduce the number of degrees of freedom needed for non-rigid registration by only retaining the most significant modes of variation observed in the training set. User-defined transformation components, like affine modes, are merged with the principal components into a unified framework. Optimization proceeds along the transformation components rather then along the individual spline coefficients. The concept of SSDM's is applied to the temporal registration of thorax CR-images using pattern intensity as the registration measure. Our results show that, using 30 training pairs, a reduction of 33% is possible in the number of degrees of freedom without deterioration of the result. The same accuracy as without SSDM's is still achieved after a reduction up to 66% of the degrees of freedom.
我们提出一种统计样条变形模型(SSDM)作为解决非刚性图像配准的方法。在此模型中,变形通过经统计训练的B样条变形网格来表示。该模型通过对训练集进行主成分分析来训练。这种方法通过仅保留训练集中观察到的最显著变化模式,减少了非刚性配准所需的自由度数量。用户定义的变换分量,如仿射模式,与主成分合并到一个统一框架中。优化沿着变换分量进行,而不是沿着各个样条系数进行。SSDM的概念应用于胸部CR图像的时间配准,使用模式强度作为配准度量。我们的结果表明,使用30对训练数据,在不降低结果质量的情况下,自由度数量有可能减少33%。在自由度减少高达66%之后,仍能达到与不使用SSDM时相同的精度。