Suppr超能文献

利用胸部 CT 图像对 COVID-19 严重程度和进展进行自动量化。

Automated quantification of COVID-19 severity and progression using chest CT images.

机构信息

Department of Radiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA.

出版信息

Eur Radiol. 2021 Jan;31(1):436-446. doi: 10.1007/s00330-020-07156-2. Epub 2020 Aug 13.

Abstract

OBJECTIVE

To develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans.

METHODS

One hundred twenty chest CT scans from subjects with lung infiltrates were used for training deep learning algorithms to segment lung regions and vessels. Seventy-two serial scans from 24 COVID-19 subjects were used to develop and test algorithms to detect and quantify the presence and progression of infiltrates associated with COVID-19. The algorithm included (1) automated lung boundary and vessel segmentation, (2) registration of the lung boundary between serial scans, (3) computerized identification of the pneumonitis regions, and (4) assessment of disease progression. Agreement between radiologist manually delineated regions and computer-detected regions was assessed using the Dice coefficient. Serial scans were registered and used to generate a heatmap visualizing the change between scans. Two radiologists, using a five-point Likert scale, subjectively rated heatmap accuracy in representing progression.

RESULTS

There was strong agreement between computer detection and the manual delineation of pneumonic regions with a Dice coefficient of 81% (CI 76-86%). In detecting large pneumonia regions (> 200 mm), the algorithm had a sensitivity of 95% (CI 94-97%) and specificity of 84% (CI 81-86%). Radiologists rated 95% (CI 72 to 99) of heatmaps at least "acceptable" for representing disease progression.

CONCLUSION

The preliminary results suggested the feasibility of using computer software to detect and quantify pneumonic regions associated with COVID-19 and to generate heatmaps that can be used to visualize and assess progression.

KEY POINTS

• Both computer vision and deep learning technology were used to develop computer software to quantify the presence and progression of pneumonia associated with COVID-19 depicted on CT images. • The computer software was tested using both quantitative experiments and subjective assessment. • The computer software has the potential to assist in the detection of the pneumonic regions, monitor disease progression, and assess treatment efficacy related to COVID-19.

摘要

目的

开发并测试计算机软件,使用胸部 CT 扫描检测、量化和监测与 COVID-19 相关的肺炎进展。

方法

使用 120 例肺部浸润患者的胸部 CT 扫描对深度学习算法进行训练,以分割肺部区域和血管。使用 24 例 COVID-19 患者的 72 个连续扫描来开发和测试算法,以检测和量化与 COVID-19 相关的浸润的存在和进展。该算法包括(1)自动肺边界和血管分割,(2)连续扫描之间的肺边界配准,(3)计算机识别肺炎区域,以及(4)评估疾病进展。使用 Dice 系数评估放射科医生手动勾画区域和计算机检测区域之间的一致性。对连续扫描进行配准,生成热图以可视化扫描之间的变化。两名放射科医生使用五点李克特量表对热图表示进展的准确性进行主观评估。

结果

计算机检测与肺炎区域的手动勾画具有很强的一致性,Dice 系数为 81%(置信区间 76-86%)。在检测大的肺炎区域(>200 毫米)时,该算法的灵敏度为 95%(置信区间 94-97%),特异性为 84%(置信区间 81-86%)。放射科医生认为至少 95%(置信区间 72 到 99)的热图表示疾病进展是“可接受的”。

结论

初步结果表明,使用计算机软件检测和量化与 COVID-19 相关的肺炎区域并生成热图以可视化和评估进展是可行的。

关键点

• 使用计算机视觉和深度学习技术开发计算机软件,用于量化 CT 图像上与 COVID-19 相关的肺炎的存在和进展。• 该计算机软件经过了定量实验和主观评估的测试。• 该计算机软件有可能辅助检测肺炎区域、监测疾病进展和评估与 COVID-19 相关的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e2f/8408820/31ef42a52184/330_2020_7156_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验