Suppr超能文献

实时蛋白质结晶图像采集与分类系统

Real-Time Protein Crystallization Image Acquisition and Classification System.

作者信息

Sigdel Madhav, Pusey Marc L, Aygun Ramazan S

机构信息

Department of Computer Science, University of Alabama in Huntsville, Huntsville, USA.

iXpressGenes, Inc., 601 Genome Way, Huntsville, USA.

出版信息

Cryst Growth Des. 2013 Jul 3;13(7):2728-2736. doi: 10.1021/cg3016029.

Abstract

In this paper, we describe the design and implementation of a stand-alone real-time system for protein crystallization image acquisition and classification with a goal to assist crystallographers in scoring crystallization trials. In-house assembled fluorescence microscopy system is built for image acquisition. The images are classified into three categories as non-crystals, likely leads, and crystals. Image classification consists of two main steps - image feature extraction and application of classification based on multilayer perceptron (MLP) neural networks. Our feature extraction involves applying multiple thresholding techniques, identifying high intensity regions (blobs), and generating intensity and blob features to obtain a 45-dimensional feature vector per image. To reduce the risk of missing crystals, we introduce a max-class ensemble classifier which applies multiple classifiers and chooses the highest score (or class). We performed our experiments on 2250 images consisting 67% non-crystal, 18% likely leads, and 15% clear crystal images and tested our results using 10-fold cross validation. Our results demonstrate that the method is very efficient (< 3 seconds to process and classify an image) and has comparatively high accuracy. Our system only misses 1.2% of the crystals (classified as non-crystals) most likely due to low illumination or out of focus image capture and has an overall accuracy of 88%.

摘要

在本文中,我们描述了一个用于蛋白质结晶图像采集和分类的独立实时系统的设计与实现,目标是协助晶体学家对结晶试验进行评分。我们构建了内部组装的荧光显微镜系统用于图像采集。图像被分为非晶体、可能的先导物和晶体三类。图像分类包括两个主要步骤——图像特征提取和基于多层感知器(MLP)神经网络的分类应用。我们的特征提取包括应用多种阈值技术、识别高强度区域(斑点)以及生成强度和斑点特征,以获得每张图像的45维特征向量。为降低错过晶体的风险,我们引入了一种最大类集成分类器,它应用多个分类器并选择最高分(或类别)。我们在2250张图像上进行了实验,其中67%为非晶体图像、18%为可能的先导物图像、15%为清晰的晶体图像,并使用10折交叉验证测试了我们的结果。我们的结果表明,该方法非常高效(处理和分类一张图像不到3秒)且具有相对较高的准确率。我们的系统仅错过1.2%的晶体(被分类为非晶体),最有可能是由于光照不足或图像对焦不准,总体准确率为88%。

相似文献

4
3D cerebral MR image segmentation using multiple-classifier system.使用多分类器系统的3D脑磁共振图像分割
Med Biol Eng Comput. 2017 Mar;55(3):353-364. doi: 10.1007/s11517-016-1483-z. Epub 2016 May 20.
9
CrystPro: Spatiotemporal Analysis of Protein Crystallization Images.CrystPro:蛋白质结晶图像的时空分析
Cryst Growth Des. 2015;15(11):5254-5262. doi: 10.1021/acs.cgd.5b00714. Epub 2015 Sep 16.

引用本文的文献

1
Deep learning applications in protein crystallography.深度学习在蛋白质晶体学中的应用。
Acta Crystallogr A Found Adv. 2024 Jan 1;80(Pt 1):1-17. doi: 10.1107/S2053273323009300.
2
: an open-source graphical user interface for crystallization screening.用于结晶筛选的开源图形用户界面。
J Appl Crystallogr. 2021 Feb 19;54(Pt 2):673-679. doi: 10.1107/S1600576721000108. eCollection 2021 Apr 1.
7
Super-Thresholding: Supervised Thresholding of Protein Crystal Images.超阈值处理:蛋白质晶体图像的监督阈值处理
IEEE/ACM Trans Comput Biol Bioinform. 2017 Jul-Aug;14(4):986-998. doi: 10.1109/TCBB.2016.2542811. Epub 2016 Mar 16.
8
Optimizing Associative Experimental Design for Protein Crystallization Screening.优化用于蛋白质结晶筛选的关联实验设计
IEEE Trans Nanobioscience. 2016 Mar;15(2):101-12. doi: 10.1109/TNB.2016.2536030. Epub 2016 Feb 29.
9
CrystPro: Spatiotemporal Analysis of Protein Crystallization Images.CrystPro:蛋白质结晶图像的时空分析
Cryst Growth Des. 2015;15(11):5254-5262. doi: 10.1021/acs.cgd.5b00714. Epub 2015 Sep 16.

本文引用的文献

1
Protein crystallization analysis on the World Community Grid.世界计算网格上的蛋白质结晶分析。
J Struct Funct Genomics. 2010 Mar;11(1):61-9. doi: 10.1007/s10969-009-9076-9. Epub 2010 Jan 14.
3
Image-based crystal detection: a machine-learning approach.基于图像的晶体检测:一种机器学习方法。
Acta Crystallogr D Biol Crystallogr. 2008 Dec;64(Pt 12):1187-95. doi: 10.1107/S090744490802982X. Epub 2008 Nov 18.
4
Fluorescence approaches to growing macromolecule crystals.用于生长大分子晶体的荧光方法。
Methods Mol Biol. 2008;426:377-85. doi: 10.1007/978-1-60327-058-8_24.
5
Classification of protein crystallization imagery.蛋白质结晶图像的分类
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:1628-31. doi: 10.1109/IEMBS.2004.1403493.
7
Trace fluorescent labeling for high-throughput crystallography.用于高通量晶体学的微量荧光标记
Acta Crystallogr D Biol Crystallogr. 2006 Mar;62(Pt 3):339-46. doi: 10.1107/S0907444906000813. Epub 2006 Feb 22.
10
Evaluation of protein crystallization states based on texture information derived from greyscale images.
Acta Crystallogr D Biol Crystallogr. 2005 Jul;61(Pt 7):873-80. doi: 10.1107/S0907444905007948. Epub 2005 Jun 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验