Suppr超能文献

优化用于蛋白质结晶筛选的关联实验设计

Optimizing Associative Experimental Design for Protein Crystallization Screening.

作者信息

Dinc Imren, Pusey Marc L, Aygun Ramazan S

出版信息

IEEE Trans Nanobioscience. 2016 Mar;15(2):101-12. doi: 10.1109/TNB.2016.2536030. Epub 2016 Feb 29.

Abstract

The goal of protein crystallization screening is the determination of the main factors of importance to crystallizing the protein under investigation. One of the major issues about determining these factors is that screening is often expanded to many hundreds or thousands of conditions to maximize combinatorial chemical space coverage for maximizing the chances of a successful (crystalline) outcome. In this paper, we propose an experimental design method called "Associative Experimental Design (AED)" and an optimization method includes eliminating prohibited combinations and prioritizing reagents based on AED analysis of results from protein crystallization experiments. AED generates candidate cocktails based on these initial screening results. These results are analyzed to determine those screening factors in chemical space that are most likely to lead to higher scoring outcomes, crystals. We have tested AED on three proteins derived from the hyperthermophile Thermococcus thioreducens, and we applied an optimization method to these proteins. Our AED method generated novel cocktails (count provided in parentheses) leading to crystals for three proteins as follows: Nucleoside diphosphate kinase (4), HAD superfamily hydrolase (2), Nucleoside kinase (1). After getting promising results, we have tested our optimization method on four different proteins. The AED method with optimization yielded 4, 3, and 20 crystalline conditions for holo Human Transferrin, archaeal exosome protein, and Nucleoside diphosphate kinase, respectively.

摘要

蛋白质结晶筛选的目标是确定对所研究蛋白质结晶至关重要的主要因素。确定这些因素的一个主要问题是,筛选通常会扩展到数百或数千种条件,以最大限度地覆盖组合化学空间,从而增加成功(结晶)的机会。在本文中,我们提出了一种称为“关联实验设计(AED)”的实验设计方法,以及一种优化方法,该方法包括基于蛋白质结晶实验结果的AED分析消除禁止的组合并对试剂进行优先级排序。AED根据这些初始筛选结果生成候选混合液。对这些结果进行分析,以确定化学空间中最有可能导致更高得分结果(晶体)的那些筛选因素。我们已在源自嗜热栖热菌的三种蛋白质上测试了AED,并对这些蛋白质应用了优化方法。我们的AED方法产生了新型混合液(括号内提供了数量),分别导致三种蛋白质结晶如下:核苷二磷酸激酶(4种)、HAD超家族水解酶(2种)、核苷激酶(1种)。在取得有希望的结果后,我们在四种不同的蛋白质上测试了我们的优化方法。经过优化的AED方法分别为全人转铁蛋白、古菌外泌体蛋白和核苷二磷酸激酶产生了4种、3种和20种结晶条件。

相似文献

1
Optimizing Associative Experimental Design for Protein Crystallization Screening.
IEEE Trans Nanobioscience. 2016 Mar;15(2):101-12. doi: 10.1109/TNB.2016.2536030. Epub 2016 Feb 29.
2
Automatic classification and pattern discovery in high-throughput protein crystallization trials.
J Struct Funct Genomics. 2005;6(2-3):195-202. doi: 10.1007/s10969-005-5243-9.
3
Development of an automated large-scale protein-crystallization and monitoring system for high-throughput protein-structure analyses.
Acta Crystallogr D Biol Crystallogr. 2006 Sep;62(Pt 9):1058-65. doi: 10.1107/S0907444906023821. Epub 2006 Aug 19.
4
Protein crystallization: virtual screening and optimization.
Prog Biophys Mol Biol. 2005 Jul;88(3):285-309. doi: 10.1016/j.pbiomolbio.2004.07.008. Epub 2004 Sep 30.
5
High-throughput crystallization screening.
Methods Mol Biol. 2014;1140:159-68. doi: 10.1007/978-1-4939-0354-2_12.
6
Protein crystallization for structure-based drug design.
Methods Mol Biol. 2012;841:67-91. doi: 10.1007/978-1-61779-520-6_4.
7
Systematic improvement of protein crystals by determining the supersolubility curves of phase diagrams.
Biophys J. 2003 Feb;84(2 Pt 1):1218-22. doi: 10.1016/S0006-3495(03)74936-4.
8
Evaluation of crystalline objects in crystallizing protein droplets based on line-segment information in greyscale images.
Acta Crystallogr D Biol Crystallogr. 2006 Mar;62(Pt 3):239-45. doi: 10.1107/S0907444905041077. Epub 2006 Feb 22.
9
Lysine methylation as a routine rescue strategy for protein crystallization.
Structure. 2006 Nov;14(11):1617-22. doi: 10.1016/j.str.2006.09.005.
10
Computational optimization of associative learning experiments.
PLoS Comput Biol. 2020 Jan 6;16(1):e1007593. doi: 10.1371/journal.pcbi.1007593. eCollection 2020 Jan.

引用本文的文献

1
Ionic Liquids as Protein Crystallization Additives.
Crystals (Basel). 2021 Oct;11(10). doi: 10.3390/cryst11101166. Epub 2021 Sep 24.
3
Schema Matching and Data Integration with Consistent Naming on Protein Crystallization Screens.
IEEE/ACM Trans Comput Biol Bioinform. 2020 Nov-Dec;17(6):2074-2085. doi: 10.1109/TCBB.2019.2913368. Epub 2020 Dec 8.
4
Feature analysis for classification of trace fluorescent labeled protein crystallization images.
BioData Min. 2017 Apr 27;10:14. doi: 10.1186/s13040-017-0133-9. eCollection 2017.

本文引用的文献

1
Trace fluorescent labeling for protein crystallization.
Acta Crystallogr F Struct Biol Commun. 2015 Jul;71(Pt 7):806-14. doi: 10.1107/S2053230X15008626. Epub 2015 Jun 27.
2
Origin and use of crystallization phase diagrams.
Acta Crystallogr F Struct Biol Commun. 2015 Mar;71(Pt 3):247-60. doi: 10.1107/S2053230X1500374X. Epub 2015 Feb 28.
3
Latest methods of fluorescence-based protein crystal identification.
Acta Crystallogr F Struct Biol Commun. 2015 Feb;71(Pt 2):121-31. doi: 10.1107/S2053230X15000114. Epub 2015 Jan 28.
4
Determination of protein phase diagrams by microbatch experiments: exploring the influence of precipitants and pH.
Int J Pharm. 2015 Feb 1;479(1):28-40. doi: 10.1016/j.ijpharm.2014.12.027. Epub 2014 Dec 23.
5
Optimization of crystallization conditions for biological macromolecules.
Acta Crystallogr F Struct Biol Commun. 2014 Nov;70(Pt 11):1445-67. doi: 10.1107/S2053230X14019670. Epub 2014 Oct 31.
6
Microseed matrix screening for optimization in protein crystallization: what have we learned?
Acta Crystallogr F Struct Biol Commun. 2014 Sep;70(Pt 9):1117-26. doi: 10.1107/S2053230X14015507. Epub 2014 Aug 29.
7
Crystallization screening: the influence of history on current practice.
Acta Crystallogr F Struct Biol Commun. 2014 Jul;70(Pt 7):835-53. doi: 10.1107/S2053230X1401262X. Epub 2014 Jun 27.
9
Real-Time Protein Crystallization Image Acquisition and Classification System.
Cryst Growth Des. 2013 Jul 3;13(7):2728-2736. doi: 10.1021/cg3016029.
10
Introduction to protein crystallization.
Acta Crystallogr F Struct Biol Commun. 2014 Jan;70(Pt 1):2-20. doi: 10.1107/S2053230X13033141. Epub 2013 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验