Suppr超能文献

脂质组学“深度剖析”:一种揭示信号脂质新分子种类的增强工作流程。

Lipidomic "deep profiling": an enhanced workflow to reveal new molecular species of signaling lipids.

作者信息

Narayanaswamy Pradeep, Shinde Sudhirkumar, Sulc Robert, Kraut Rachel, Staples Gregory, Thiam Chung Hwee, Grimm Rudolf, Sellergren Börje, Torta Federico, Wenk Markus R

机构信息

Department of Biological Sciences, National University of Singapore , 117543, Singapore.

出版信息

Anal Chem. 2014 Mar 18;86(6):3043-7. doi: 10.1021/ac4039652. Epub 2014 Feb 27.

Abstract

Current mass spectrometry-based lipidomics aims to comprehensively cover wide ranges of lipid classes. We introduce a strategy to capture phospho-monoester lipids and improve the detection of long-chain base phosphates (LCB-Ps, e.g., sphingosine-1-phosphate). Ten novel LCB-Ps (d18:2, t20:1, odd carbon forms) were discovered and characterized in tissues from human and mouse, as well in D. melanogaster and S. cerevisiae. These findings have immediate relevance for our understanding of sphingosine-1-phosphate biosynthesis, signaling, and degradation.

摘要

当前基于质谱的脂质组学旨在全面涵盖广泛的脂质类别。我们引入了一种策略来捕获磷酸单酯脂质,并改进对长链碱基磷酸盐(LCB-Ps,例如鞘氨醇-1-磷酸)的检测。在人和小鼠的组织中,以及在黑腹果蝇和酿酒酵母中发现并鉴定了10种新型LCB-Ps(d18:2、t20:1、奇数碳形式)。这些发现对于我们理解鞘氨醇-1-磷酸的生物合成、信号传导和降解具有直接意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验