School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, VIC 3001, Australia.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3454-9. doi: 10.1073/pnas.1320907111. Epub 2014 Feb 18.
Voltage-gated Na(+) channels play an essential role in electrical signaling in the nervous system and are key pharmacological targets for a range of disorders. The recent solution of X-ray structures for the bacterial channel NavAb has provided an opportunity to study functional mechanisms at the atomic level. This channel's selectivity filter exhibits an EEEE ring sequence, characteristic of mammalian Ca(2+), not Na(+), channels. This raises the fundamentally important question: just what makes a Na(+) channel conduct Na(+) ions? Here we explore ion permeation on multimicrosecond timescales using the purpose-built Anton supercomputer. We isolate the likely protonation states of the EEEE ring and observe a striking flexibility of the filter that demonstrates the necessity for extended simulations to study conduction in this channel. We construct free energy maps to reveal complex multi-ion conduction via knock-on and "pass-by" mechanisms, involving concerted ion and glutamate side chain movements. Simulations in mixed ionic solutions reveal relative energetics for Na(+), K(+), and Ca(2+) within the pore that are consistent with the modest selectivity seen experimentally. We have observed conformational changes in the pore domain leading to asymmetrical collapses of the activation gate, similar to proposed inactivated structures of NavAb, with helix bending involving conserved residues that are critical for slow inactivation. These structural changes are shown to regulate access to fenestrations suggested to be pathways for lipophilic drugs and provide deeper insight into the molecular mechanisms connecting drug activity and slow inactivation.
电压门控钠离子通道在神经系统的电信号传递中起着至关重要的作用,是一系列疾病的关键药物靶点。最近,X 射线结构解析为细菌通道 NavAb 提供了一个在原子水平上研究功能机制的机会。该通道的选择性过滤器表现出EEEE 环序列,这是哺乳动物 Ca(2+)而不是 Na(+)通道的特征。这就提出了一个非常重要的问题:究竟是什么使钠离子通道传导钠离子?在这里,我们使用定制的 Anton 超级计算机在多微秒时间尺度上探索离子渗透。我们分离EEEE 环的可能质子化状态,并观察到过滤器的惊人灵活性,这表明需要进行扩展模拟来研究该通道中的传导。我们构建自由能图谱来揭示通过撞击和“路过”机制的复杂多离子传导,涉及协同离子和谷氨酸侧链运动。在混合离子溶液中的模拟揭示了孔内 Na(+)、K(+)和 Ca(2+)的相对能量,这与实验中观察到的适度选择性一致。我们已经观察到了孔域中的构象变化,导致激活门的不对称坍塌,类似于 NavAb 的拟失活结构,涉及到对慢失活至关重要的保守残基的螺旋弯曲。这些结构变化被证明可以调节对推测为亲脂性药物途径的窗孔的进入,并为连接药物活性和慢失活的分子机制提供了更深入的了解。