Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
J Gen Physiol. 2012 Jun;139(6):507-16. doi: 10.1085/jgp.201210779.
Recent structural breakthroughs with the voltage-gated sodium channel from Arcobacter butzleri suggest that such bacterial channels may provide a structural platform to advance the understanding of eukaryotic sodium channel gating and pharmacology. We therefore set out to determine whether compounds known to interact with eukaryotic Na(V)s could also inhibit the bacterial channel from Bacillus halodurans and NaChBac and whether they did so through similar mechanisms as in their eukaryotic homologues. The data show that the archetypal local anesthetic (LA) lidocaine inhibits resting NaChBac channels with a dissociation constant (K(d)) of 260 µM, and channels displayed a left-shifted steady-state inactivation gating relationship in the presence of the drug. Extracellular application of QX-314 to expressed NaChBac channels had no effect on sodium current, whereas internal exposure via injection of a bolus of the quaternary derivative rapidly reduced sodium conductance, consistent with a hydrophilic cytoplasmic access pathway to an internal binding site. However, the neutral derivative benzocaine applied externally inhibited NaChBac channels, suggesting that hydrophobic pathways can also provide drug access to inhibit channels. Alternatively, ranolazine, a putative preopen state blocker of eukaryotic Na(V)s, displayed a K(d) of 60 µM and left-shifted the NaChBac activation-voltage relationship. In each case, block enhanced entry into the inactivated state of the channel, an effect that is well described by a simple kinetic scheme. The data suggest that although significant differences exist, LA block of eukaryotic Na(V)s also occurs in bacterial sodium channels and that NaChBac shares pharmacological homology to the resting state of vertebrate Na(V) homologues.
最近,来自弯曲杆菌的电压门控钠离子通道的结构突破表明,这种细菌通道可能为理解真核钠离子通道门控和药理学提供了一个结构平台。因此,我们着手确定已知与真核 Na(V)s 相互作用的化合物是否也能抑制来自嗜盐杆菌和 NaChBac 的细菌通道,以及它们是否通过与真核同源物类似的机制发挥作用。数据表明,典型的局部麻醉剂(LA)利多卡因以 260µM 的解离常数(K(d))抑制静止的 NaChBac 通道,并且在药物存在下通道显示出稳态失活门控关系的左移。QX-314 在表达的 NaChBac 通道上的细胞外应用对钠电流没有影响,而通过注射季铵衍生物的脉冲内部暴露则迅速降低钠电导,这与亲水细胞质进入内部结合位点的途径一致。然而,外部应用的中性衍生物苯佐卡因抑制了 NaChBac 通道,这表明亲脂性途径也可以提供药物进入以抑制通道。或者,雷诺嗪是一种假定的真核 Na(V)s 的预开状态阻断剂,其 K(d)为 60µM,并且使 NaChBac 的激活-电压关系左移。在每种情况下,阻断增强了通道进入失活状态,这种效应可以通过简单的动力学方案很好地描述。数据表明,尽管存在显著差异,但 LA 对真核 Na(V)s 的阻断也发生在细菌钠离子通道中,并且 NaChBac 与脊椎动物 Na(V)同源物的静息状态具有药理学同源性。