Cohen Raphael, Aviram Iddo, Elhadad Michael, Elhadad Noémie
Department of Computer Science, Ben Gurion University, Beer Sheva, Israel.
Department of Biomedical Informatics, Columbia University, New York, New York, United States of America.
PLoS One. 2014 Feb 13;9(2):e87555. doi: 10.1371/journal.pone.0087555. eCollection 2014.
The clinical notes in a given patient record contain much redundancy, in large part due to clinicians' documentation habit of copying from previous notes in the record and pasting into a new note. Previous work has shown that this redundancy has a negative impact on the quality of text mining and topic modeling in particular. In this paper we describe a novel variant of Latent Dirichlet Allocation (LDA) topic modeling, Red-LDA, which takes into account the inherent redundancy of patient records when modeling content of clinical notes. To assess the value of Red-LDA, we experiment with three baselines and our novel redundancy-aware topic modeling method: given a large collection of patient records, (i) apply vanilla LDA to all documents in all input records; (ii) identify and remove all redundancy by chosing a single representative document for each record as input to LDA; (iii) identify and remove all redundant paragraphs in each record, leaving partial, non-redundant documents as input to LDA; and (iv) apply Red-LDA to all documents in all input records. Both quantitative evaluation carried out through log-likelihood on held-out data and topic coherence of produced topics and qualitative assessment of topics carried out by physicians show that Red-LDA produces superior models to all three baseline strategies. This research contributes to the emerging field of understanding the characteristics of the electronic health record and how to account for them in the framework of data mining. The code for the two redundancy-elimination baselines and Red-LDA is made publicly available to the community.
给定患者记录中的临床笔记存在大量冗余,很大程度上是由于临床医生有从记录中的先前笔记复制并粘贴到新笔记中的记录习惯。先前的研究表明,这种冗余尤其会对文本挖掘和主题建模的质量产生负面影响。在本文中,我们描述了一种潜在狄利克雷分配(LDA)主题建模的新颖变体,即Red-LDA,它在对临床笔记内容进行建模时考虑了患者记录中固有的冗余。为了评估Red-LDA的价值,我们使用三个基线和我们新颖的冗余感知主题建模方法进行了实验:给定大量患者记录,(i)将普通LDA应用于所有输入记录中的所有文档;(ii)通过为每个记录选择一个代表性文档作为LDA的输入来识别并去除所有冗余;(iii)识别并去除每个记录中的所有冗余段落,将部分非冗余文档作为LDA的输入;以及(iv)将Red-LDA应用于所有输入记录中的所有文档。通过对留出数据进行对数似然性以及对生成主题的主题连贯性进行的定量评估,以及医生对主题进行的定性评估均表明,Red-LDA生成的模型优于所有三种基线策略。这项研究有助于新兴的理解电子健康记录特征以及如何在数据挖掘框架中考虑这些特征的领域。两种冗余消除基线和Red-LDA的代码已向社区公开。