Suppr超能文献

植入式保留手指假体的应力分布:一项有限元研究。

Stress distribution in implant retained finger prosthesis: a finite element study.

作者信息

Amornvit Pokpong, Rokaya Dinesh, Keawcharoen Konrawee, Thongpulsawasdi Nimit

机构信息

Maxillofacial Prosthetic Clinic, Faculty of Dentistry, Mahidol University , Bangkok, Thailand .

Maxillofacial Surgery Clinic, Golden Jubilee, Medical Centre, Mahidol University , NakonPathom, Salaya, Thailand .

出版信息

J Clin Diagn Res. 2013 Dec;7(12):2851-4. doi: 10.7860/JCDR/2013/7001.3775. Epub 2013 Dec 15.

Abstract

BACKGROUND

Finger amputation may result from congenital cause, trauma, infection and tumours. The finger amputation may be rehabilitated with dental implant-retained finger prosthesis. The success of implant-retained finger prosthesis is determined by the implant loading. The type of the force is a determining factor in implant loading.

OBJECTIVE

To evaluate stress distributions in finger bone when the loading force is applied along the long axis of the implant using finite element analysis.

METHOD

The finite element models were created. The finger bone model containing cortical bone and cancellous bone was constructed by using radiograph. Astra Tech Osseo Speed bone level implant of 4.5 mm diameter and 14 mm length was selected. The force was applied to the top of the abutment along the long axis of the implant.

RESULTS

Finite element analysis indicated that the maximum stress was located at the head of abutment screw. The minimum stress was located in the apical third of the implant fixture. The weakest point was calculated by safety factor which is located in the spongy bone at apical third of the fixtures. Finally, 4.9 times yield stress of spongy bone was needed for the deformation of the spongy bone.

CONCLUSION

Finite element study showed that when the force was applied along the long axis of the implant, the maximum stress was located around the neck of the implant and the cortex bone received more stress than cancellous bone. So, to achieve long term success, the designers of implant systems must confront biomaterial and biomechanical problems including in vivo forces on implants, load transmission to the interface and interfacial tissue response.

摘要

背景

手指截肢可能由先天性原因、创伤、感染和肿瘤引起。手指截肢可通过牙种植体固位的手指假体进行修复。种植体固位手指假体的成功取决于种植体的负载情况。力的类型是种植体负载的一个决定性因素。

目的

使用有限元分析评估沿种植体长轴施加负载力时手指骨中的应力分布。

方法

创建有限元模型。通过X线片构建包含皮质骨和松质骨的手指骨模型。选择直径4.5 mm、长度14 mm的Astra Tech Osseo Speed骨水平种植体。沿种植体长轴将力施加于基台顶部。

结果

有限元分析表明,最大应力位于基台螺钉头部。最小应力位于种植体基台的根尖三分之一处。通过安全系数计算得出最薄弱点位于基台根尖三分之一处的松质骨中。最后,松质骨变形需要4.9倍的松质骨屈服应力。

结论

有限元研究表明,当沿种植体长轴施加力时,最大应力位于种植体颈部周围,皮质骨比松质骨承受更多应力。因此,为了实现长期成功,种植体系统的设计者必须面对生物材料和生物力学问题,包括种植体上的体内力、向界面的载荷传递以及界面组织反应。

相似文献

1
Stress distribution in implant retained finger prosthesis: a finite element study.
J Clin Diagn Res. 2013 Dec;7(12):2851-4. doi: 10.7860/JCDR/2013/7001.3775. Epub 2013 Dec 15.
2
A finite element analysis on the biomechanical performance of implant-retained finger prostheses designed for Asians.
J Plast Reconstr Aesthet Surg. 2022 Nov;75(11):4048-4053. doi: 10.1016/j.bjps.2022.08.014. Epub 2022 Aug 23.
7
Effect of different biocompatible implant materials on the mechanical stability of dental implants under excessive oblique load.
Clin Implant Dent Relat Res. 2019 Dec;21(6):1206-1217. doi: 10.1111/cid.12858. Epub 2019 Oct 31.

引用本文的文献

2
Artificial intelligence in dentistry and dental biomaterials.
Front Dent Med. 2024 Dec 23;5:1525505. doi: 10.3389/fdmed.2024.1525505. eCollection 2024.
4
Effect of angled abutments in the posterior maxillary region on tilted implants: a 3D finite element analysis.
Med Biol Eng Comput. 2024 Aug;62(8):2585-2597. doi: 10.1007/s11517-024-03081-4. Epub 2024 Apr 24.
5
Incisor torque expression characteristics in two passive self-ligating brackets placed at different heights. A finite element investigation.
J Oral Biol Craniofac Res. 2024 Jan-Feb;14(1):98-106. doi: 10.1016/j.jobcr.2024.01.003. Epub 2024 Jan 15.
7
PowerScope 2 functional appliance: A 3D finite element simulation of its action on the mandible.
J Oral Biol Craniofac Res. 2023 Mar-Apr;13(2):299-305. doi: 10.1016/j.jobcr.2023.02.014. Epub 2023 Mar 1.
9
Healing Abutment Distortion in Implant Prostheses: An In Vitro Study.
J Funct Biomater. 2022 Jun 21;13(3):85. doi: 10.3390/jfb13030085.
10

本文引用的文献

1
One- vs two stage surgery technique for implant placement in finger prosthesis.
J Clin Diagn Res. 2013 Sep;7(9):1956-68. doi: 10.7860/JCDR/2013/6153.3368. Epub 2013 Sep 10.
2
Esthetic, functional, and prosthetic outcomes with implant-retained finger prostheses.
Prosthet Orthot Int. 2013 Apr;37(2):168-74. doi: 10.1177/0309364612449850. Epub 2012 Jul 24.
4
Evaluation of stress induced in peri-implant bone tissue by misfit in multi-implant prosthesis.
Dent Mater. 2006 Apr;22(4):388-95. doi: 10.1016/j.dental.2005.08.001. Epub 2005 Sep 29.
6
Two dental implants designed for immediate loading: a finite element analysis.
Int J Oral Maxillofac Implants. 2002 May-Jun;17(3):353-62.
7
Application of finite element analysis in implant dentistry: a review of the literature.
J Prosthet Dent. 2001 Jun;85(6):585-98. doi: 10.1067/mpr.2001.115251.
8
The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study.
Clin Oral Implants Res. 2001 Jun;12(3):207-18. doi: 10.1034/j.1600-0501.2001.012003207.x.
10
Osseointegrated thumb prostheses: a concept for fixation of digit prosthetic devices.
J Hand Surg Am. 1996 Mar;21(2):216-21. doi: 10.1016/s0363-5023(96)80103-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验