Suppr超能文献

基于个体静息 fMRI 研究内在脑连接的时间非局部均值滤波。

Temporal non-local means filtering for studies of intrinsic brain connectivity from individual resting fMRI.

机构信息

Signal and Image Processing Institute, University of Southern California, Los Angeles 90089 USA.

Neuroscience Graduate Program, University of Southern California, Los Angeles 90089 USA.

出版信息

Med Image Anal. 2020 Apr;61:101635. doi: 10.1016/j.media.2020.101635. Epub 2020 Jan 7.

Abstract

Characterizing functional brain connectivity using resting functional magnetic resonance imaging (fMRI) is challenging due to the relatively small Blood-Oxygen-Level Dependent contrast and low signal-to-noise ratio. Denoising using surface-based Laplace-Beltrami (LB) or volumetric Gaussian filtering tends to blur boundaries between different functional areas. To overcome this issue, a time-based Non-Local Means (tNLM) filtering method was previously developed to denoise fMRI data while preserving spatial structure. The kernel and parameters that define the tNLM filter need to be optimized for each application. Here we present a novel Global PDF-based tNLM filtering (GPDF) algorithm that uses a data-driven kernel function based on a Bayes factor to optimize filtering for spatial delineation of functional connectivity in resting fMRI data. We demonstrate its performance relative to Gaussian spatial filtering and the original tNLM filtering via simulations. We also compare the effects of GPDF filtering against LB filtering using individual in-vivo resting fMRI datasets. Our results show that LB filtering tends to blur signals across boundaries between adjacent functional regions. In contrast, GPDF filtering enables improved noise reduction without blurring adjacent functional regions. These results indicate that GPDF may be a useful preprocessing tool for analyses of brain connectivity and network topology in individual fMRI recordings.

摘要

使用静息功能磁共振成像 (fMRI) 来描述功能脑连接具有挑战性,这是由于血氧水平依赖对比度相对较小和信噪比低。使用基于表面的拉普拉斯-贝尔特拉米 (LB) 或容积高斯滤波进行去噪往往会使不同功能区域之间的边界模糊。为了克服这个问题,先前开发了基于时间的非局部均值 (tNLM) 滤波方法来对 fMRI 数据进行去噪,同时保留空间结构。定义 tNLM 滤波器的核和参数需要针对每个应用进行优化。在这里,我们提出了一种新颖的基于全局 PDF 的 tNLM 滤波 (GPDF) 算法,该算法使用基于贝叶斯因子的数据驱动核函数来优化滤波,以实现静息 fMRI 数据中功能连接的空间描绘。我们通过模拟来展示其相对于高斯空间滤波和原始 tNLM 滤波的性能。我们还比较了 GPDF 滤波与使用个体静息 fMRI 数据集的 LB 滤波的效果。我们的结果表明,LB 滤波往往会使相邻功能区域之间的信号模糊。相比之下,GPDF 滤波可以在不模糊相邻功能区域的情况下实现更好的降噪效果。这些结果表明,GPDF 可能是个体 fMRI 记录中脑连接和网络拓扑分析的有用预处理工具。

相似文献

8
Deconvolution filtering: temporal smoothing revisited.反卷积滤波:重温时间平滑
Magn Reson Imaging. 2014 Jul;32(6):721-35. doi: 10.1016/j.mri.2014.03.002. Epub 2014 Mar 15.
10
A kernel machine-based fMRI physiological noise removal method.基于核机器的 fMRI 生理噪声去除方法。
Magn Reson Imaging. 2014 Feb;32(2):150-62. doi: 10.1016/j.mri.2013.10.008. Epub 2013 Oct 19.

引用本文的文献

5
Mapping the subcortical connectivity of the human default mode network.绘制人类默认模式网络的皮质下连接图。
Neuroimage. 2021 Dec 15;245:118758. doi: 10.1016/j.neuroimage.2021.118758. Epub 2021 Nov 25.

本文引用的文献

4
The impact of traditional neuroimaging methods on the spatial localization of cortical areas.传统神经影像学方法对皮质区空间定位的影响。
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6356-E6365. doi: 10.1073/pnas.1801582115. Epub 2018 Jun 20.
6
Modular Brain Networks.模块化脑网络
Annu Rev Psychol. 2016;67:613-40. doi: 10.1146/annurev-psych-122414-033634. Epub 2015 Sep 21.
8
Resting-state fMRI in the Human Connectome Project.静息态功能磁共振成像在人类连接组计划中的应用。
Neuroimage. 2013 Oct 15;80:144-68. doi: 10.1016/j.neuroimage.2013.05.039. Epub 2013 May 20.
9
The WU-Minn Human Connectome Project: an overview.《WU-Minn 人类连接组计划:概述》。
Neuroimage. 2013 Oct 15;80:62-79. doi: 10.1016/j.neuroimage.2013.05.041. Epub 2013 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验