Department of Statistics, University of Georgia, Athens, GA 30602, USA.
J Neurosci Methods. 2010 Nov 30;193(2):334-42. doi: 10.1016/j.jneumeth.2010.08.021. Epub 2010 Sep 9.
In this paper, we conduct an investigation of the null hypothesis distribution for functional magnetic resonance imaging (fMRI) time series using multiscale analysis tools, SiZer (significance of zero crossings of the derivative) and wavelets. Most current approaches to the analysis of fMRI data assume simple models for temporal (short term or long term) dependence structure. Such simplifications are to some extent necessary due to the complex, high-dimensional nature of the data, but to date there have been few systematic studies of the dependence structures under a range of possible null hypotheses, using data sets gathered specifically for that purpose. We aim to address some of these issues by analyzing the detrended data with a long enough time horizon to study possible long-range temporal dependence. Our multiscale approach shows that even for resting-state data, data, i.e. "null" or ambient thought, some voxel time series cannot be modeled by white noise and need long-range dependent type error structure. This finding suggests the use of different time series models in different parts of the brain in fMRI studies.
在本文中,我们使用多尺度分析工具 SiZer(导数过零点的显著性)和小波对功能磁共振成像(fMRI)时间序列的零假设分布进行了研究。目前大多数 fMRI 数据分析方法都假设时间(短期或长期)依赖结构的简单模型。由于数据的复杂、高维性质,这种简化在某种程度上是必要的,但迄今为止,很少有使用专门为此目的收集的数据集对一系列可能的零假设下的依赖结构进行系统研究。我们旨在通过分析具有足够长时间范围的去趋势数据来解决其中的一些问题,以研究可能的长程时间依赖关系。我们的多尺度方法表明,即使对于静息态数据,即“零”或背景思维,也有一些体素时间序列不能用白噪声建模,需要长程相关类型的误差结构。这一发现表明,在 fMRI 研究中,大脑不同部位需要使用不同的时间序列模型。