Park Hwangseo
Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 143-747, Korea,
J Comput Aided Mol Des. 2014 Mar;28(3):175-86. doi: 10.1007/s10822-014-9729-z. Epub 2014 Feb 20.
Extended solvent-contact model was applied to the blind prediction of the hydration free energies of 47 organic molecules included in the SAMPL4 data set. To obtain a suitable prediction tool, we constructed a hydration free energy function involving three kinds of atomic parameters. With respect to total 34 atom types introduced to describe all SAMPL4 molecules, 102 atomic parameters were defined and optimized with a standard genetic algorithm in such a way to minimize the difference between the experimental hydration free energies and those calculated with the hydration free energy function. In this parameterization, we used a training set comprising 77 organic molecules with varying sizes and shapes. The estimated hydration free energies for the SAMPL4 molecules compared reasonably well with the experimental results with the associated squared correlation coefficient and root mean square deviation of 0.89 and 1.46 kcal/mol, respectively. Based on the comparative analysis of experimental and computational hydration free energies of the SAMPL4 molecules, the methods for further improvement of the present hydration model are suggested.
扩展溶剂接触模型被应用于对SAMPL4数据集中47个有机分子的水化自由能进行盲预测。为了获得合适的预测工具,我们构建了一个涉及三种原子参数的水化自由能函数。对于为描述所有SAMPL4分子而引入的总共34种原子类型,定义了102个原子参数,并使用标准遗传算法进行优化,以使实验水化自由能与用水化自由能函数计算得到的结果之间的差异最小化。在这个参数化过程中,我们使用了一个包含77个大小和形状各异的有机分子的训练集。SAMPL4分子的估计水化自由能与实验结果相当吻合,相关的平方相关系数和均方根偏差分别为0.89和1.46千卡/摩尔。基于对SAMPL4分子实验和计算水化自由能的比较分析,提出了进一步改进当前水化模型的方法。