Suppr超能文献

工程学降低了合成生物学的进化潜力。

Engineering reduced evolutionary potential for synthetic biology.

作者信息

Renda Brian A, Hammerling Michael J, Barrick Jeffrey E

机构信息

Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.

出版信息

Mol Biosyst. 2014 Jul;10(7):1668-78. doi: 10.1039/c3mb70606k. Epub 2014 Feb 21.

Abstract

The field of synthetic biology seeks to engineer reliable and predictable behaviors in organisms from collections of standardized genetic parts. However, unlike other types of machines, genetically encoded biological systems are prone to changes in their designed sequences due to mutations in their DNA sequences after these devices are constructed and deployed. Thus, biological engineering efforts can be confounded by undesired evolution that rapidly breaks the functions of parts and systems, particularly when they are costly to the host cell to maintain. Here, we explain the fundamental properties that determine the evolvability of biological systems. Then, we use this framework to review current efforts to engineer the DNA sequences that encode synthetic biology devices and the genomes of their microbial hosts to reduce their ability to evolve and therefore increase their genetic reliability so that they maintain their intended functions over longer timescales.

摘要

合成生物学领域致力于通过标准化遗传元件的组合来设计生物体中可靠且可预测的行为。然而,与其他类型的机器不同,在构建和部署这些装置后,由于DNA序列中的突变,基因编码的生物系统容易出现设计序列的变化。因此,生物工程的努力可能会因意外的进化而受到干扰,这种进化会迅速破坏元件和系统的功能,尤其是当它们对宿主细胞的维持成本很高时。在这里,我们解释决定生物系统进化能力的基本特性。然后,我们利用这个框架来回顾当前为设计编码合成生物学装置的DNA序列及其微生物宿主的基因组所做的努力,以降低它们的进化能力,从而提高它们的遗传可靠性,使它们在更长的时间尺度上保持预期的功能。

相似文献

1
Engineering reduced evolutionary potential for synthetic biology.
Mol Biosyst. 2014 Jul;10(7):1668-78. doi: 10.1039/c3mb70606k. Epub 2014 Feb 21.
2
The mismeasure of machine: Synthetic biology and the trouble with engineering metaphors.
Stud Hist Philos Biol Biomed Sci. 2013 Dec;44(4 Pt B):660-8. doi: 10.1016/j.shpsc.2013.05.013. Epub 2013 Jun 18.
3
Enabling plant synthetic biology through genome engineering.
Trends Biotechnol. 2015 Feb;33(2):120-31. doi: 10.1016/j.tibtech.2014.11.008. Epub 2014 Dec 12.
4
Microbial systems engineering: first successes and the way ahead.
Bioessays. 2010 Apr;32(4):356-62. doi: 10.1002/bies.200900174.
5
A wise consistency: engineering biology for conformity, reliability, predictability.
Curr Opin Chem Biol. 2013 Dec;17(6):893-901. doi: 10.1016/j.cbpa.2013.09.012. Epub 2013 Nov 20.
6
Genome-scale engineering for systems and synthetic biology.
Mol Syst Biol. 2013;9:641. doi: 10.1038/msb.2012.66.
7
A synthetic approach to abiogenesis.
Nat Methods. 2014 May;11(5):495-8. doi: 10.1038/nmeth.2893.
8
Toward scalable parts families for predictable design of biological circuits.
Curr Opin Microbiol. 2008 Dec;11(6):567-73. doi: 10.1016/j.mib.2008.10.002. Epub 2008 Nov 12.
9
Synthetic Biology-The Synthesis of Biology.
Angew Chem Int Ed Engl. 2017 Jun 1;56(23):6396-6419. doi: 10.1002/anie.201609229. Epub 2017 Apr 25.
10
Reverse Engineering in Biotechnology: The Role of Genetic Engineering in Synthetic Biology.
Methods Mol Biol. 2024;2719:307-324. doi: 10.1007/978-1-0716-3461-5_17.

引用本文的文献

1
Idiosyncratic evolvability among single-point ribosomal mutants towards multi-aminoglycoside resistance.
PLoS Genet. 2025 Aug 25;21(8):e1011832. doi: 10.1371/journal.pgen.1011832. eCollection 2025 Aug.
2
Reduced Genetic Heterogeneity for Stable Bioproduction by Harnessing the Bias and Mechanism of Mutation.
Microb Biotechnol. 2025 Jun;18(6):e70162. doi: 10.1111/1751-7915.70162.
3
Harnessing microbial heterogeneity for improved biosynthesis fueled by synthetic biology.
Synth Syst Biotechnol. 2024 Nov 19;10(1):281-293. doi: 10.1016/j.synbio.2024.11.004. eCollection 2025.
6
Identifying widespread and recurrent variants of genetic parts to improve annotation of engineered DNA sequences.
PLoS One. 2024 May 28;19(5):e0304164. doi: 10.1371/journal.pone.0304164. eCollection 2024.
8
9
Open-endedness in synthetic biology: A route to continual innovation for biological design.
Sci Adv. 2024 Jan 19;10(3):eadi3621. doi: 10.1126/sciadv.adi3621.
10
Competition and evolutionary selection among core regulatory motifs in gene expression control.
Nat Commun. 2023 Dec 13;14(1):8266. doi: 10.1038/s41467-023-43327-7.

本文引用的文献

1
PERSPECTIVE: COMPLEX ADAPTATIONS AND THE EVOLUTION OF EVOLVABILITY.
Evolution. 1996 Jun;50(3):967-976. doi: 10.1111/j.1558-5646.1996.tb02339.x.
2
Directed evolution of genetic parts and circuits by compartmentalized partnered replication.
Nat Biotechnol. 2014 Jan;32(1):97-101. doi: 10.1038/nbt.2714. Epub 2013 Nov 3.
3
Genome dynamics during experimental evolution.
Nat Rev Genet. 2013 Dec;14(12):827-39. doi: 10.1038/nrg3564. Epub 2013 Oct 29.
4
Adaptive laboratory evolution -- principles and applications for biotechnology.
Microb Cell Fact. 2013 Jul 1;12:64. doi: 10.1186/1475-2859-12-64.
5
Characterization of 582 natural and synthetic terminators and quantification of their design constraints.
Nat Methods. 2013 Jul;10(7):659-64. doi: 10.1038/nmeth.2515. Epub 2013 Jun 2.
6
Precise and reliable gene expression via standard transcription and translation initiation elements.
Nat Methods. 2013 Apr;10(4):354-60. doi: 10.1038/nmeth.2404. Epub 2013 Mar 10.
7
Synthetic biology: advancing the design of diverse genetic systems.
Annu Rev Chem Biomol Eng. 2013;4:69-102. doi: 10.1146/annurev-chembioeng-061312-103351. Epub 2013 Feb 13.
8
Preparing synthetic biology for the world.
Front Microbiol. 2013 Jan 25;4:5. doi: 10.3389/fmicb.2013.00005. eCollection 2013.
9
The emerging world of synthetic genetics.
Chem Biol. 2012 Nov 21;19(11):1360-71. doi: 10.1016/j.chembiol.2012.10.011.
10
Rationally designed bidirectional promoter improves the evolutionary stability of synthetic genetic circuits.
Nucleic Acids Res. 2013 Jan 7;41(1):e33. doi: 10.1093/nar/gks972. Epub 2012 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验