Suppr超能文献

描述槲皮素及其代谢物在大鼠体内血浆浓度的基于生理学的药代动力学(PBK)模型。

A physiologically based kinetic (PBK) model describing plasma concentrations of quercetin and its metabolites in rats.

机构信息

Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands.

Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands.

出版信息

Biochem Pharmacol. 2014 May 15;89(2):287-99. doi: 10.1016/j.bcp.2014.02.007. Epub 2014 Feb 19.

Abstract

Biological activities of flavonoids in vivo are ultimately dependent on the systemic bioavailability of the aglycones as well as their metabolites. In the present study, a physiologically based kinetic (PBK) model was developed to predict plasma concentrations of the flavonoid quercetin and its metabolites and to tentatively identify the regiospecificity of the major circulating metabolites. The model was developed based on in vitro metabolic parameters and by fitting kinetic parameters to literature available in vivo data. Both exposure to quercetin aglycone and to quercetin-4'-O-glucoside, for which in vivo data were available, were simulated. The predicted plasma concentrations of different metabolites adequately matched literature reported plasma concentrations of these metabolites in rats exposed to 4'-O-glucoside. The bioavailability of aglycone was predicted to be very low ranging from 0.004%-0.1% at different oral doses of quercetin or quercetin-4'-O-glucoside. Glucuronidation was a crucial pathway that limited the bioavailability of the aglycone, with 95-99% of the dose being converted to monoglucuronides within 1.5-2.5h at different dose levels ranging from 0.1 to 50mg/kg bw quercetin or quercetin-4'-O-glucoside. The fast metabolic conversion to monoglucuronides allowed these metabolites to further conjugate to di- and tri-conjugates. The regiospecificity of major circulating metabolites was observed to be dose-dependent. As we still lack in vivo kinetic data for many flavonoids, the developed model has a great potential to be used as a platform to build PBK models for other flavonoids as well as to predict the kinetics of flavonoids in humans.

摘要

类黄酮在体内的生物活性最终取决于糖苷配基的全身生物利用度及其代谢物。本研究建立了一个基于生理的动力学(PBK)模型,用于预测类黄酮槲皮素及其代谢物的血浆浓度,并初步确定主要循环代谢物的区域特异性。该模型是基于体外代谢参数,并通过拟合动力学参数与体内可用的文献数据而建立的。同时模拟了暴露于槲皮素糖苷元和槲皮素-4'-O-葡萄糖苷的情况,而体内数据可用于这两种物质。不同代谢物的预测血浆浓度与文献报道的大鼠暴露于 4'-O-葡萄糖苷时这些代谢物的血浆浓度相当吻合。预测糖苷元的生物利用度非常低,在不同剂量的槲皮素或槲皮素-4'-O-葡萄糖苷口服时,其范围为 0.004%-0.1%。葡萄糖醛酸化是限制糖苷元生物利用度的关键途径,在不同剂量水平(0.1 至 50mg/kg bw 槲皮素或槲皮素-4'-O-葡萄糖苷)下,1.5-2.5 小时内,95-99%的剂量转化为单葡萄糖醛酸苷。这些代谢物迅速转化为单葡萄糖醛酸苷,使其能够进一步与二聚体和三聚体结合。主要循环代谢物的区域特异性观察到与剂量有关。由于我们仍然缺乏许多类黄酮的体内动力学数据,因此所开发的模型具有很大的潜力,可以用作建立其他类黄酮 PBK 模型的平台,并预测黄酮类化合物在人体内的动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验