Côrte-Real Leonor, Mendes Filipa, Coimbra Joana, Morais Tânia S, Tomaz Ana Isabel, Valente Andreia, Garcia M Helena, Santos Isabel, Bicho Manuel, Marques Fernanda
Unidade Ciências Químicas e Radiofarmacêuticas, Instituto Superior Técnico, Universidade de Lisboa, Polo de Loures-Campus Tecnológico e Nuclear, Estrada Nacional 10, km 139.7, 2695-066, Bobadela LRS Sacavém, Portugal.
J Biol Inorg Chem. 2014 Aug;19(6):853-67. doi: 10.1007/s00775-014-1120-y. Epub 2014 Feb 23.
A set of structurally related Ru(η(5)-C5H5) complexes with bidentate N,N'-heteroaromatic ligands have been evaluated as prospective metallodrugs, with focus on exploring the uptake and cell death mechanisms and potential cellular targets. We have extended these studies to examine the potential of these complexes to target cancer cell metabolism, the energetic-related phenotype of cancer cells. The observations that these complexes can enter cells, probably facilitated by binding to plasma transferrin, and can be retained preferentially at the membranes prompted us to explore possible membrane targets involved in cancer cell metabolism. Most malignant tumors present the Warburg effect, which consists in increasing glycolytic rates with production of lactate, even in the presence of oxygen. The reliance of glycolytic cancer cells on trans-plasma-membrane electron transport (TPMET) systems for their continued survival raises the question of their appropriateness as a target for anticancer drug development strategies. Considering the interesting findings that some anticancer drugs in clinical use are cytotoxic even without entering cells and can inhibit TPMET activity, we investigated whether redox enzyme modulation could be a potential mechanism of action of antitumor ruthenium complexes. The results from this study indicated that ruthenium complexes can inhibit lactate production and TPMET activity in a way dependent on the cancer cell aggressiveness and the concentration of the complex. Combination approaches that target cell metabolism (glycolytic inhibitors) as well as proliferation are needed to successfully cure cancer. This study supports the potential use of some of these ruthenium complexes as adjuvants of glycolytic inhibitors in the treatment of aggressive cancers.
一组具有结构相关性的含双齿N,N'-杂芳族配体的Ru(η(5)-C5H5)配合物已被评估为潜在的金属药物,重点是探索其摄取和细胞死亡机制以及潜在的细胞靶点。我们扩展了这些研究,以考察这些配合物靶向癌细胞代谢(即癌细胞与能量相关的表型)的潜力。这些配合物能够进入细胞(可能是通过与血浆转铁蛋白结合而促进)并且能够优先保留在细胞膜上,这一观察结果促使我们探索参与癌细胞代谢的可能的膜靶点。大多数恶性肿瘤呈现瓦伯格效应,即即使在有氧存在的情况下,糖酵解速率增加并产生乳酸。糖酵解癌细胞对跨质膜电子传递(TPMET)系统的持续存活依赖,这引发了它们作为抗癌药物开发策略靶点是否合适的问题。鉴于一些临床使用的抗癌药物即使不进入细胞也具有细胞毒性并且能够抑制TPMET活性这一有趣发现,我们研究了氧化还原酶调节是否可能是抗肿瘤钌配合物的一种潜在作用机制。这项研究的结果表明,钌配合物能够以一种依赖于癌细胞侵袭性和配合物浓度的方式抑制乳酸产生和TPMET活性。需要将靶向细胞代谢(糖酵解抑制剂)以及增殖的联合方法用于成功治愈癌症。这项研究支持了其中一些钌配合物作为糖酵解抑制剂佐剂用于治疗侵袭性癌症的潜在用途。