Suppr超能文献

从在未知随机方向获取的含噪投影进行二维断层成像。

Two-Dimensional Tomography from Noisy Projections Taken at Unknown Random Directions.

作者信息

Singer A, Wu H-T

机构信息

Department of Mathematics and PACM, Princeton University, Princeton, NJ 08544-1000 (

Department of Mathematics, Princeton University, Princeton, NJ 08544-1000 (

出版信息

SIAM J Imaging Sci. 2013 Jan 1;6(1):136-175. doi: 10.1137/090764657.

Abstract

Computerized tomography is a standard method for obtaining internal structure of objects from their projection images. While CT reconstruction requires the knowledge of the imaging directions, there are some situations in which the imaging directions are unknown, for example, when imaging a moving object. It is therefore desirable to design a reconstruction method from projection images taken at unknown directions. Another difficulty arises from the fact that the projections are often contaminated by noise, practically limiting all current methods, including the recently proposed diffusion map approach. In this paper, we introduce two denoising steps that allow reconstructions at much lower signal-to-noise ratios (SNRs) when combined with the diffusion map framework. In the first denoising step we use principal component analysis (PCA) together with classical Wiener filtering to derive an asymptotically optimal linear filter. In the second step, we denoise the graph of similarities between the filtered projections using a network analysis measure such as the Jaccard index. Using this combination of PCA, Wiener filtering, graph denoising, and diffusion maps, we are able to reconstruct the two-dimensional (2-D) Shepp-Logan phantom from simulative noisy projections at SNRs well below their currently reported threshold values. We also report the results of a numerical experiment corresponding to an abdominal CT. Although the focus of this paper is the 2-D CT reconstruction problem, we believe that the combination of PCA, Wiener filtering, graph denoising, and diffusion maps is potentially useful in other signal processing and image analysis applications.

摘要

计算机断层扫描是一种从物体的投影图像获取其内部结构的标准方法。虽然CT重建需要成像方向的知识,但在某些情况下成像方向是未知的,例如对运动物体进行成像时。因此,期望设计一种从未知方向拍摄的投影图像进行重建的方法。另一个困难源于投影常常被噪声污染这一事实,实际上限制了所有当前方法,包括最近提出的扩散映射方法。在本文中,我们引入了两个去噪步骤,当与扩散映射框架相结合时,能够在低得多的信噪比(SNR)下进行重建。在第一个去噪步骤中,我们使用主成分分析(PCA)结合经典维纳滤波来推导一个渐近最优线性滤波器。在第二步中,我们使用诸如杰卡德指数等网络分析度量对滤波后的投影之间的相似性图进行去噪。通过将PCA、维纳滤波、图去噪和扩散映射相结合,我们能够从信噪比远低于当前报道阈值的模拟噪声投影中重建二维(2-D)Shepp-Logan体模。我们还报告了一个对应于腹部CT的数值实验结果。尽管本文的重点是二维CT重建问题,但我们相信PCA、维纳滤波、图去噪和扩散映射的组合在其他信号处理和图像分析应用中可能是有用的。

相似文献

1
Two-Dimensional Tomography from Noisy Projections Taken at Unknown Random Directions.
SIAM J Imaging Sci. 2013 Jan 1;6(1):136-175. doi: 10.1137/090764657.
2
Wavelet-domain TI Wiener-like filtering for complex MR data denoising.
Magn Reson Imaging. 2016 Oct;34(8):1128-40. doi: 10.1016/j.mri.2016.05.011. Epub 2016 May 26.
3
Graph Laplacian tomography from unknown random projections.
IEEE Trans Image Process. 2008 Oct;17(10):1891-9. doi: 10.1109/TIP.2008.2002305.
4
Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics.
Med Phys. 2019 Jan;46(1):190-198. doi: 10.1002/mp.13252. Epub 2018 Nov 19.
5
Self-supervised denoising of projection data for low-dose cone-beam CT.
Med Phys. 2023 Oct;50(10):6319-6333. doi: 10.1002/mp.16421. Epub 2023 Apr 20.
8
Adaptive nonlocal means filtering based on local noise level for CT denoising.
Med Phys. 2014 Jan;41(1):011908. doi: 10.1118/1.4851635.
9
[Progress in filters for denoising cryo-electron microscopy images].
Beijing Da Xue Xue Bao Yi Xue Ban. 2021 Mar 3;53(2):425-433. doi: 10.19723/j.issn.1671-167X.2021.02.033.

引用本文的文献

1
The -invariant graph Laplacian part II: Diffusion maps.
Appl Comput Harmon Anal. 2024 Nov;73. doi: 10.1016/j.acha.2024.101695. Epub 2024 Aug 12.
2
Cryo-EM heterogeneity analysis using regularized covariance estimation and kernel regression.
Proc Natl Acad Sci U S A. 2025 Mar 4;122(9):e2419140122. doi: 10.1073/pnas.2419140122. Epub 2025 Feb 26.
3
Cryo-EM reconstruction of continuous heterogeneity by Laplacian spectral volumes.
Inverse Probl. 2020 Feb;36(2). doi: 10.1088/1361-6420/ab4f55. Epub 2020 Jan 28.
4
Fast Steerable Principal Component Analysis.
IEEE Trans Comput Imaging. 2016 Mar;2(1):1-12. doi: 10.1109/TCI.2016.2514700. Epub 2016 Jan 18.
6
Fourier-Bessel rotational invariant eigenimages.
J Opt Soc Am A Opt Image Sci Vis. 2013 May 1;30(5):871-7. doi: 10.1364/JOSAA.30.000871.

本文引用的文献

1
On Consistency and Sparsity for Principal Components Analysis in High Dimensions.
J Am Stat Assoc. 2009 Jun 1;104(486):682-693. doi: 10.1198/jasa.2009.0121.
2
Graph Laplacian tomography from unknown random projections.
IEEE Trans Image Process. 2008 Oct;17(10):1891-9. doi: 10.1109/TIP.2008.2002305.
3
Network 'small-world-ness': a quantitative method for determining canonical network equivalence.
PLoS One. 2008 Apr 30;3(4):e0002051. doi: 10.1371/journal.pone.0002051.
4
Feasibility of tomography with unknown view angles.
IEEE Trans Image Process. 2000;9(6):1107-22. doi: 10.1109/83.846252.
5
Uniqueness of tomography with unknown view angles.
IEEE Trans Image Process. 2000;9(6):1094-106. doi: 10.1109/83.846251.
6
Assessing experimentally derived interactions in a small world.
Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4372-6. doi: 10.1073/pnas.0735871100. Epub 2003 Apr 3.
7
Collective dynamics of 'small-world' networks.
Nature. 1998 Jun 4;393(6684):440-2. doi: 10.1038/30918.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验