Marine Akira, Krager Kimberly J, Aykin-Burns Nukhet, Macmillan-Crow Lee Ann
Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
Redox Biol. 2014 Jan 23;2:348-57. doi: 10.1016/j.redox.2014.01.014. eCollection 2014.
Superoxide is widely regarded as the primary reactive oxygen species (ROS) which initiates downstream oxidative stress. Increased oxidative stress contributes, in part, to many disease conditions such as cancer, atherosclerosis, ischemia/reperfusion, diabetes, aging, and neurodegeneration. Manganese superoxide dismutase (MnSOD) catalyzes the dismutation of superoxide into hydrogen peroxide which can then be further detoxified by other antioxidant enzymes. MnSOD is critical in maintaining the normal function of mitochondria, thus its inactivation is thought to lead to compromised mitochondria. Previously, our laboratory observed increased mitochondrial biogenesis in a novel kidney-specific MnSOD knockout mouse. The current study used transient siRNA mediated MnSOD knockdown of normal rat kidney (NRK) cells as the in vitro model, and confirmed functional mitochondrial biogenesis evidenced by increased PGC1α expression, mitochondrial DNA copy numbers and integrity, electron transport chain protein CORE II, mitochondrial mass, oxygen consumption rate, and overall ATP production. Further mechanistic studies using mitoquinone (MitoQ), a mitochondria-targeted antioxidant and L-NAME, a nitric oxide synthase (NOS) inhibitor demonstrated that peroxynitrite (at low micromolar levels) induced mitochondrial biogenesis. These findings provide the first evidence that low levels of peroxynitrite can initiate a protective signaling cascade involving mitochondrial biogenesis which may help to restore mitochondrial function following transient MnSOD inactivation.
超氧化物被广泛认为是引发下游氧化应激的主要活性氧(ROS)。氧化应激增加在一定程度上导致了许多疾病状况,如癌症、动脉粥样硬化、缺血/再灌注、糖尿病、衰老和神经退行性变。锰超氧化物歧化酶(MnSOD)催化超氧化物歧化为过氧化氢,然后过氧化氢可被其他抗氧化酶进一步解毒。MnSOD对维持线粒体的正常功能至关重要,因此其失活被认为会导致线粒体功能受损。此前,我们实验室在一种新型肾脏特异性MnSOD基因敲除小鼠中观察到线粒体生物发生增加。本研究使用瞬时小干扰RNA(siRNA)介导的正常大鼠肾(NRK)细胞MnSOD敲低作为体外模型,并通过增加的PGC1α表达、线粒体DNA拷贝数和完整性、电子传递链蛋白CORE II、线粒体质量、氧消耗率和总体ATP产生来证实功能性线粒体生物发生。使用线粒体靶向抗氧化剂米托醌(MitoQ)和一氧化氮合酶(NOS)抑制剂L-NAME进行的进一步机制研究表明,过氧亚硝酸盐(低微摩尔水平)诱导线粒体生物发生。这些发现提供了首个证据,即低水平的过氧亚硝酸盐可启动涉及线粒体生物发生的保护性信号级联反应,这可能有助于在MnSOD瞬时失活后恢复线粒体功能。