Suppr超能文献

急性心力衰竭的风险分层。

Risk stratification in acute heart failure.

机构信息

Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada.

Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada; Canadian VIGOUR Centre, Edmonton, Alberta, Canada.

出版信息

Can J Cardiol. 2014 Mar;30(3):312-9. doi: 10.1016/j.cjca.2014.01.001. Epub 2014 Jan 3.

Abstract

Acute heart failure is a leading reason for emergency department visits, hospital admissions, and readmissions. Despite the high rate of hospitalization for heart failure and the high resource burden attributable to acute heart failure, limitations of clinical decisions have been demonstrated. Risk stratification methods might provide guidance to clinicians who care for patients with acute heart failure syndromes, and might improve decision-making in emergent care when decisions must be made quickly and accurately. Although many acute heart failure risk models have been developed in hospitalized cohorts to predict in-hospital mortality, there are fewer methods to enable prognostication broadly among all patients in a community-based setting. As validated predictive risk algorithms become increasingly accessible, they may be applied to select optimal therapies, determine how patients will be cared for in the emergency department, and improve decisions pertaining to patient disposition and follow-up.

摘要

急性心力衰竭是导致急诊科就诊、住院和再住院的主要原因。尽管心力衰竭的住院率很高,急性心力衰竭造成的资源负担也很高,但临床决策仍存在局限性。风险分层方法可以为急性心力衰竭综合征患者的临床医生提供指导,并在需要快速准确地做出决策时改善紧急护理的决策。尽管已经在住院患者队列中开发了许多急性心力衰竭风险模型来预测院内死亡率,但在基于社区的环境中广泛预测所有患者的预后的方法却较少。随着经过验证的预测风险算法变得越来越容易获得,它们可以用于选择最佳治疗方法,确定在急诊科如何照顾患者,并改善与患者处置和随访相关的决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验