Suppr超能文献

化学正交三补丁微球。

Chemically orthogonal three-patch microparticles.

机构信息

Department of Biomedical Engineering, Chemical Engineering, Macromolecular Science and Engineering, Material Science and Engineering, University of Michigan, Ann Arbor, 48109 (USA) http://www.umich.edu/∼lahannj/index.htm; Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany).

出版信息

Angew Chem Int Ed Engl. 2014 Feb 24;53(9):2332-8. doi: 10.1002/anie.201310727. Epub 2014 Feb 14.

Abstract

Compared to two-dimensional substrates, only a few methodologies exist for the spatially controlled decoration of three-dimensional objects, such as microparticles. Combining electrohydrodynamic co-jetting with synthetic polymer chemistry, we were able to create two- and three-patch microparticles displaying chemically orthogonal anchor groups on three distinct surface patches of the same particle. This approach takes advantage of a combination of novel chemically orthogonal polylactide-based polymers and their processing by electrohydrodynamic co-jetting to yield unprecedented multifunctional microparticles. Several micropatterned particles were fabricated displaying orthogonal click functionalities. Specifically, we demonstrate novel two- and three-patch particles. Multi-patch particles are highly sought after for their potential to present multiple distinct ligands in a directional manner. This work clearly establishes a viable route towards orthogonal reaction strategies on multivalent micropatterned particles.

摘要

与二维基底相比,只有少数几种方法可用于对三维物体(如微颗粒)进行空间控制的修饰。通过将电动力学共喷射与合成聚合物化学相结合,我们能够制造出具有两个和三个补丁的微颗粒,这些微颗粒在同一颗粒的三个不同表面补丁上显示出化学正交的锚定基团。这种方法利用了新型化学正交的基于聚乳酸的聚合物的组合及其通过电动力学共喷射进行的处理,从而产生了前所未有的多功能微颗粒。制造了几种具有正交点击功能的微图案化颗粒。具体来说,我们展示了新型的两个和三个补丁颗粒。多补丁颗粒因其能够以定向方式呈现多个不同配体的潜力而备受追捧。这项工作清楚地确立了在多价微图案化颗粒上进行正交反应策略的可行途径。

相似文献

1
Chemically orthogonal three-patch microparticles.
Angew Chem Int Ed Engl. 2014 Feb 24;53(9):2332-8. doi: 10.1002/anie.201310727. Epub 2014 Feb 14.
2
Controlled microstructuring of janus particles based on a multifunctional poly(ethylene glycol).
Macromol Rapid Commun. 2013 Oct;34(19):1554-9. doi: 10.1002/marc.201300427. Epub 2013 Aug 28.
3
Towards designer microparticles: simultaneous control of anisotropy, shape, and size.
Small. 2010 Feb 5;6(3):404-11. doi: 10.1002/smll.200901306.
4
7
Bifunctional Janus Spheres with Chemically Orthogonal Patches.
ACS Macro Lett. 2019 Jun 18;8(6):714-718. doi: 10.1021/acsmacrolett.9b00193. Epub 2019 May 28.
9
Synthesis, characterization, and directional binding of anisotropic biohybrid microparticles for multiplexed biosensing.
Macromol Rapid Commun. 2014 Jan;35(1):56-65. doi: 10.1002/marc.201300652. Epub 2013 Nov 8.

引用本文的文献

1
Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches.
Adv Sci (Weinh). 2022 Mar;9(8):e2104012. doi: 10.1002/advs.202104012. Epub 2022 Jan 25.
2
Electrokinetic characterization of synthetic protein nanoparticles.
Beilstein J Nanotechnol. 2020 Oct 13;11:1556-1567. doi: 10.3762/bjnano.11.138. eCollection 2020.
3
Compartmentalized Microhelices Prepared via Electrohydrodynamic Cojetting.
Adv Sci (Weinh). 2018 Apr 19;5(6):1800024. doi: 10.1002/advs.201800024. eCollection 2018 Jun.
4
Engineering of nanoparticle size via electrohydrodynamic jetting.
Bioeng Transl Med. 2016 Jun 20;1(1):82-93. doi: 10.1002/btm2.10010. eCollection 2016 Mar.
5
Janus particles for biological imaging and sensing.
Analyst. 2016 Jun 21;141(12):3526-39. doi: 10.1039/c6an00325g. Epub 2016 Apr 7.
7
Dual Release Carriers for Cochlear Delivery.
Adv Healthc Mater. 2016 Jan 7;5(1):94-100. doi: 10.1002/adhm.201500141. Epub 2015 Jul 14.
8
CXCR4-Targeted Nanocarriers for Triple Negative Breast Cancers.
Biomacromolecules. 2015 Aug 10;16(8):2412-7. doi: 10.1021/acs.biomac.5b00653. Epub 2015 Jul 22.
9
Cardiomyocyte-Driven Actuation in Biohybrid Microcylinders.
Adv Mater. 2015 Aug;27(30):4509-4515. doi: 10.1002/adma.201501284. Epub 2015 Jun 24.

本文引用的文献

1
Self-Assembly of Patchy Particles.
Nano Lett. 2004 Aug;4(8):1407-1413. doi: 10.1021/nl0493500.
3
Patchy particle self-assembly via metal coordination.
J Am Chem Soc. 2013 Sep 25;135(38):14064-7. doi: 10.1021/ja4075979. Epub 2013 Sep 17.
4
Geometric curvature controls the chemical patchiness and self-assembly of nanoparticles.
Nat Nanotechnol. 2013 Sep;8(9):676-81. doi: 10.1038/nnano.2013.158. Epub 2013 Aug 18.
5
Recent progress on patchy colloids and their self-assembly.
J Phys Condens Matter. 2013 May 15;25(19):193101. doi: 10.1088/0953-8984/25/19/193101. Epub 2013 Apr 24.
6
Shaping colloids for self-assembly.
Nat Commun. 2013;4:1688. doi: 10.1038/ncomms2694.
7
DNA patchy particles.
Adv Mater. 2013 May 28;25(20):2779-83. doi: 10.1002/adma.201204864. Epub 2013 Apr 3.
8
Synthesis, assembly, and image analysis of spheroidal patchy particles.
Langmuir. 2013 Apr 16;29(15):4688-96. doi: 10.1021/la400317t. Epub 2013 Apr 2.
10
Precise control of cell adhesion by combination of surface chemistry and soft lithography.
Adv Healthc Mater. 2013 Jan;2(1):95-108. doi: 10.1002/adhm.201200104. Epub 2012 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验