Suppr超能文献

展示高性能等离子体镓-石墨烯耦合的能力。

Demonstrating the capability of the high-performance plasmonic gallium-graphene couple.

机构信息

Electrical and Computer Engineering Department, Duke University , Durham, North Carolina 27705, United States.

出版信息

ACS Nano. 2014 Mar 25;8(3):3031-41. doi: 10.1021/nn500472r. Epub 2014 Mar 4.

Abstract

Metal nanoparticle (NP)-graphene multifunctional platforms are of great interest for exploring strong light-graphene interactions enhanced by plasmons and for improving performance of numerous applications, such as sensing and catalysis. These platforms can also be used to carry out fundamental studies on charge transfer, and the findings can lead to new strategies for doping graphene. There have been a large number of studies on noble metal Au-graphene and Ag-graphene platforms that have shown their potential for a number of applications. These studies have also highlighted some drawbacks that must be overcome to realize high performance. Here we demonstrate the promise of plasmonic gallium (Ga) nanoparticle (NP)-graphene hybrids as a means of modulating the graphene Fermi level, creating tunable localized surface plasmon resonances and, consequently, creating high-performance surface-enhanced Raman scattering (SERS) platforms. Four prominent peculiarities of Ga, differentiating it from the commonly used noble (gold and silver) metals are (1) the ability to create tunable (from the UV to the visible) plasmonic platforms, (2) its chemical stability leading to long-lifetime plasmonic platforms, (3) its ability to n-type dope graphene, and (4) its weak chemical interaction with graphene, which preserves the integrity of the graphene lattice. As a result of these factors, a Ga NP-enhanced graphene Raman intensity effect has been observed. To further elucidate the roles of the electromagnetic enhancement (or plasmonic) mechanism in relation to electron transfer, we compare graphene-on-Ga NP and Ga NP-on-graphene SERS platforms using the cationic dye rhodamine B, a drug model biomolecule, as the analyte.

摘要

金属纳米粒子(NP)-石墨烯多功能平台对于探索等离子体增强的强光-石墨烯相互作用以及提高众多应用(如传感和催化)的性能非常感兴趣。这些平台还可用于进行关于电荷转移的基础研究,研究结果可为掺杂石墨烯提供新的策略。已经有大量关于贵金属 Au-石墨烯和 Ag-石墨烯平台的研究,这些研究表明了它们在许多应用中的潜力。这些研究还强调了必须克服一些缺点,才能实现高性能。在这里,我们展示了等离子体镓(Ga)纳米粒子(NP)-石墨烯杂化物作为调节石墨烯费米能级、创建可调谐局域表面等离子体共振以及因此创建高性能表面增强拉曼散射(SERS)平台的方法的前景。Ga 与常用的贵金属(金和银)有四个显著区别,(1)能够创建可调谐(从紫外到可见)的等离子体平台的能力,(2)导致长寿命等离子体平台的化学稳定性,(3)能够 n 型掺杂石墨烯的能力,以及(4)与石墨烯的弱化学相互作用,这保持了石墨烯晶格的完整性。由于这些因素,观察到了 Ga NP 增强石墨烯拉曼强度的效果。为了进一步阐明与电子转移相关的电磁增强(或等离子体)机制的作用,我们使用阳离子染料罗丹明 B(一种药物模型生物分子)比较了石墨烯在 Ga NP 上和 Ga NP 在石墨烯上的 SERS 平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验