Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada.
Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada and Canadian Institute for Advanced Research/Quantum Materials Program, Toronto, Ontario MSG 1Z8, Canada.
Phys Rev Lett. 2014 Feb 21;112(7):077204. doi: 10.1103/PhysRevLett.112.077204. Epub 2014 Feb 20.
Recently, realizations of Kitaev physics have been sought in the A2IrO3 family of honeycomb iridates, originating from oxygen-mediated exchange through edge-shared octahedra. However, for the jeff=1/2 Mott insulator in these materials, exchange from direct d-orbital overlap is relevant, and it was proposed that a Heisenberg term should be added to the Kitaev model. Here, we provide the generic nearest-neighbor spin Hamiltonian when both oxygen-mediated and direct overlap are present, containing a bond-dependent off-diagonal exchange in addition to Heisenberg and Kitaev terms. We analyze this complete model using a combination of classical techniques and exact diagonalization. Near the Kitaev limit, we find new magnetic phases, 120° and incommensurate spiral order, as well as extended regions of zigzag and stripy order. Possible applications to Na2IrO3 and Li2IrO3 are discussed.
最近,人们在蜂窝状的 Ir 氧化物 A2IrO3 家族中寻找 Kitaev 物理的实现,这源于通过共享边缘的八面体进行氧介导的交换。然而,对于这些材料中的 jeff=1/2 莫特绝缘体,直接 d-轨道重叠的交换是相关的,有人提出应该在 Kitaev 模型中添加海森堡项。在这里,我们提供了存在氧介导和直接重叠时的通用最近邻自旋哈密顿量,除了海森堡和 Kitaev 项之外,还包含依赖于键的非对角交换。我们使用经典技术和精确对角化的组合来分析这个完整的模型。在 Kitaev 极限附近,我们发现了新的磁相,120°和非调谐螺旋有序,以及扩展的锯齿和条纹有序区域。讨论了其在 Na2IrO3 和 Li2IrO3 中的可能应用。