Suppr超能文献

结合实验与运用最大熵原理的模拟。

Combining experiments and simulations using the maximum entropy principle.

作者信息

Boomsma Wouter, Ferkinghoff-Borg Jesper, Lindorff-Larsen Kresten

机构信息

Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.

Cellular Signal Integration Group, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark.

出版信息

PLoS Comput Biol. 2014 Feb 20;10(2):e1003406. doi: 10.1371/journal.pcbi.1003406. eCollection 2014 Feb.

Abstract

A key component of computational biology is to compare the results of computer modelling with experimental measurements. Despite substantial progress in the models and algorithms used in many areas of computational biology, such comparisons sometimes reveal that the computations are not in quantitative agreement with experimental data. The principle of maximum entropy is a general procedure for constructing probability distributions in the light of new data, making it a natural tool in cases when an initial model provides results that are at odds with experiments. The number of maximum entropy applications in our field has grown steadily in recent years, in areas as diverse as sequence analysis, structural modelling, and neurobiology. In this Perspectives article, we give a broad introduction to the method, in an attempt to encourage its further adoption. The general procedure is explained in the context of a simple example, after which we proceed with a real-world application in the field of molecular simulations, where the maximum entropy procedure has recently provided new insight. Given the limited accuracy of force fields, macromolecular simulations sometimes produce results that are at not in complete and quantitative accordance with experiments. A common solution to this problem is to explicitly ensure agreement between the two by perturbing the potential energy function towards the experimental data. So far, a general consensus for how such perturbations should be implemented has been lacking. Three very recent papers have explored this problem using the maximum entropy approach, providing both new theoretical and practical insights to the problem. We highlight each of these contributions in turn and conclude with a discussion on remaining challenges.

摘要

计算生物学的一个关键组成部分是将计算机建模的结果与实验测量结果进行比较。尽管在计算生物学许多领域所使用的模型和算法方面取得了重大进展,但这种比较有时会发现计算结果与实验数据在数量上并不一致。最大熵原理是根据新数据构建概率分布的一般方法,这使得它在初始模型提供的结果与实验结果不一致的情况下成为一种自然的工具。近年来,我们这个领域中最大熵的应用数量在不断稳步增长,涵盖了从序列分析、结构建模到神经生物学等诸多不同领域。在这篇视角文章中,我们对该方法进行广泛介绍,以期鼓励其得到进一步应用。首先在一个简单示例的背景下解释一般程序,之后我们继续介绍在分子模拟领域的一个实际应用,在该领域最大熵程序最近提供了新的见解。鉴于力场的精度有限,大分子模拟有时产生的结果与实验结果并不完全在数量上一致。解决这个问题的一个常见方法是通过朝着实验数据方向扰动势能函数来明确确保两者之间的一致性。到目前为止,对于应该如何实施这种扰动还缺乏一个普遍的共识。最近有三篇论文使用最大熵方法探讨了这个问题,为该问题提供了新的理论和实践见解。我们依次突出每一项贡献,并以对 remaining challenges 的讨论作为结尾。 (注:原文中“remaining challenges”未翻译完整,推测可能是有拼写错误或者表述不完整,正常理解应该是“剩余的挑战”之类的意思,但按照要求未做修改)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验