Suppr超能文献

利用快速环构建和高度并行计算机上的批处理最小化技术,高效地对蛋白质构象空间进行采样。

Efficient sampling of protein conformational space using fast loop building and batch minimization on highly parallel computers.

机构信息

Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.

出版信息

J Comput Chem. 2012 Dec 5;33(31):2483-91. doi: 10.1002/jcc.23069. Epub 2012 Jul 27.

Abstract

All-atom sampling is a critical and compute-intensive end stage to protein structural modeling. Because of the vast size and extreme ruggedness of conformational space, even close to the native structure, the high-resolution sampling problem is almost as difficult as predicting the rough fold of a protein. Here, we present a combination of new algorithms that considerably speed up the exploration of very rugged conformational landscapes and are capable of finding heretofore hidden low-energy states. The algorithm is based on a hierarchical workflow and can be parallelized on supercomputers with up to 128,000 compute cores with near perfect efficiency. Such scaling behavior is notable, as with Moore's law continuing only in the number of cores per chip, parallelizability is a critical property of new algorithms. Using the enhanced sampling power, we have uncovered previously invisible deficiencies in the Rosetta force field and created an extensive decoy training set for optimizing and testing force fields.

摘要

全原子采样是蛋白质结构建模的关键和计算密集型的最后阶段。由于构象空间的巨大规模和极端崎岖,即使接近天然结构,高分辨率采样问题也几乎和预测蛋白质的大致折叠一样困难。在这里,我们提出了一种新算法的组合,可以大大加快对非常崎岖构象景观的探索,并能够找到迄今为止隐藏的低能状态。该算法基于分层工作流程,可以在多达 128000 个计算核的超级计算机上进行并行化,效率接近完美。这种扩展行为非常显著,因为随着摩尔定律仅在芯片上的核心数量上继续发展,并行性是新算法的关键特性。利用增强的采样能力,我们发现了 Rosetta 力场以前看不见的缺陷,并创建了一个广泛的诱饵训练集,用于优化和测试力场。

相似文献

2
A population-based evolutionary search approach to the multiple minima problem in de novo protein structure prediction.
BMC Struct Biol. 2013;13 Suppl 1(Suppl 1):S4. doi: 10.1186/1472-6807-13-S1-S4. Epub 2013 Nov 8.
3
RCD+: Fast loop modeling server.
Nucleic Acids Res. 2016 Jul 8;44(W1):W395-400. doi: 10.1093/nar/gkw395. Epub 2016 May 5.
4
Improvements to robotics-inspired conformational sampling in rosetta.
PLoS One. 2013 May 21;8(5):e63090. doi: 10.1371/journal.pone.0063090. Print 2013.
6
A Novel Method Using Abstract Convex Underestimation in Ab-Initio Protein Structure Prediction for Guiding Search in Conformational Feature Space.
IEEE/ACM Trans Comput Biol Bioinform. 2016 Sep-Oct;13(5):887-900. doi: 10.1109/TCBB.2015.2497226. Epub 2015 Nov 2.
7
Probabilistic search and energy guidance for biased decoy sampling in ab initio protein structure prediction.
IEEE/ACM Trans Comput Biol Bioinform. 2013 Sep-Oct;10(5):1162-75. doi: 10.1109/TCBB.2013.29.
8
A free-energy approach for all-atom protein simulation.
Biophys J. 2009 May 6;96(9):3483-94. doi: 10.1016/j.bpj.2008.12.3921.
9
Loop modeling: Sampling, filtering, and scoring.
Proteins. 2008 Feb 15;70(3):834-43. doi: 10.1002/prot.21612.
10
A hierarchical approach to all-atom protein loop prediction.
Proteins. 2004 May 1;55(2):351-67. doi: 10.1002/prot.10613.

引用本文的文献

1
RosettaAMRLD: A Reaction-Driven Approach for Structure-Based Drug Design from Combinatorial Libraries with Monte Carlo Metropolis Algorithms.
J Chem Inf Model. 2025 Jun 23;65(12):5945-5959. doi: 10.1021/acs.jcim.5c00497. Epub 2025 Jun 11.
2
Structural basis of nearest-neighbor cooperativity in the ring-shaped gene regulatory protein TRAP from protein engineering and cryo-EM.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2409030121. doi: 10.1073/pnas.2409030121. Epub 2024 Dec 30.
4
Design of amyloidogenic peptide traps.
Nat Chem Biol. 2024 Aug;20(8):981-990. doi: 10.1038/s41589-024-01578-5. Epub 2024 Mar 19.
5
Modeling of protein conformational changes with Rosetta guided by limited experimental data.
Structure. 2022 Aug 4;30(8):1157-1168.e3. doi: 10.1016/j.str.2022.04.013. Epub 2022 May 20.
6
Accurate positioning of functional residues with robotics-inspired computational protein design.
Proc Natl Acad Sci U S A. 2022 Mar 15;119(11):e2115480119. doi: 10.1073/pnas.2115480119. Epub 2022 Mar 7.
7
Congenital X-linked neutropenia with myelodysplasia and somatic tetraploidy due to a germline mutation in SEPT6.
Am J Hematol. 2022 Jan 1;97(1):18-29. doi: 10.1002/ajh.26382. Epub 2021 Nov 3.
8
Designing protein structures and complexes with the molecular modeling program Rosetta.
J Biol Chem. 2019 Dec 13;294(50):19436-19443. doi: 10.1074/jbc.AW119.008144. Epub 2019 Nov 7.
9
Fast design of arbitrary length loops in proteins using InteractiveRosetta.
BMC Bioinformatics. 2018 Sep 24;19(1):337. doi: 10.1186/s12859-018-2345-5.
10
Protein homology model refinement by large-scale energy optimization.
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):3054-3059. doi: 10.1073/pnas.1719115115. Epub 2018 Mar 5.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples.
Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10873-8. doi: 10.1073/pnas.1203013109. Epub 2012 Jun 25.
3
Algorithm discovery by protein folding game players.
Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):18949-53. doi: 10.1073/pnas.1115898108. Epub 2011 Nov 7.
4
Determination of the structures of symmetric protein oligomers from NMR chemical shifts and residual dipolar couplings.
J Am Chem Soc. 2011 Apr 27;133(16):6288-98. doi: 10.1021/ja111318m. Epub 2011 Apr 5.
5
Alternate states of proteins revealed by detailed energy landscape mapping.
J Mol Biol. 2011 Jan 14;405(2):607-18. doi: 10.1016/j.jmb.2010.11.008. Epub 2010 Nov 10.
6
NMR structure determination for larger proteins using backbone-only data.
Science. 2010 Feb 19;327(5968):1014-8. doi: 10.1126/science.1183649. Epub 2010 Feb 4.
7
Structure prediction for CASP8 with all-atom refinement using Rosetta.
Proteins. 2009;77 Suppl 9(0 9):89-99. doi: 10.1002/prot.22540.
9
Refinement of protein structures into low-resolution density maps using rosetta.
J Mol Biol. 2009 Sep 11;392(1):181-90. doi: 10.1016/j.jmb.2009.07.008. Epub 2009 Jul 8.
10
Refined kinetic transition networks for the GB1 hairpin peptide.
Phys Chem Chem Phys. 2009 May 14;11(18):3341-54. doi: 10.1039/b820649j. Epub 2009 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验