Suppr超能文献

基于尿肽组的2型糖尿病肾病诊断分类器的多中心前瞻性验证

Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy.

作者信息

Siwy Justyna, Schanstra Joost P, Argiles Angel, Bakker Stephan J L, Beige Joachim, Boucek Petr, Brand Korbinian, Delles Christian, Duranton Flore, Fernandez-Fernandez Beatriz, Jankowski Marie-Luise, Al Khatib Mohammad, Kunt Thomas, Lajer Maria, Lichtinghagen Ralf, Lindhardt Morten, Maahs David M, Mischak Harald, Mullen William, Navis Gerjan, Noutsou Marina, Ortiz Alberto, Persson Frederik, Petrie John R, Roob Johannes M, Rossing Peter, Ruggenenti Piero, Rychlik Ivan, Serra Andreas L, Snell-Bergeon Janet, Spasovski Goce, Stojceva-Taneva Olivera, Trillini Matias, von der Leyen Heiko, Winklhofer-Roob Brigitte M, Zürbig Petra, Jankowski Joachim

机构信息

Mosaiques Diagnostics GmbH, Hanover, Germany Charité-Universitaetsmedizin Berlin, Medizinische Klinik IV, Berlin, Germany.

Mosaiques Diagnostics GmbH, Hanover, Germany Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France Université Toulouse III Paul-Sabatier, Toulouse, France.

出版信息

Nephrol Dial Transplant. 2014 Aug;29(8):1563-70. doi: 10.1093/ndt/gfu039. Epub 2014 Mar 2.

Abstract

BACKGROUND

Diabetic nephropathy (DN) is one of the major late complications of diabetes. Treatment aimed at slowing down the progression of DN is available but methods for early and definitive detection of DN progression are currently lacking. The 'Proteomic prediction and Renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy In TYpe 2 diabetic patients with normoalbuminuria trial' (PRIORITY) aims to evaluate the early detection of DN in patients with type 2 diabetes (T2D) using a urinary proteome-based classifier (CKD273).

METHODS

In this ancillary study of the recently initiated PRIORITY trial we aimed to validate for the first time the CKD273 classifier in a multicentre (9 different institutions providing samples from 165 T2D patients) prospective setting. In addition we also investigated the influence of sample containers, age and gender on the CKD273 classifier.

RESULTS

We observed a high consistency of the CKD273 classification scores across the different centres with areas under the curves ranging from 0.95 to 1.00. The classifier was independent of age (range tested 16-89 years) and gender. Furthermore, the use of different urine storage containers did not affect the classification scores. Analysis of the distribution of the individual peptides of the classifier over the nine different centres showed that fragments of blood-derived and extracellular matrix proteins were the most consistently found.

CONCLUSION

We provide for the first time validation of this urinary proteome-based classifier in a multicentre prospective setting and show the suitability of the CKD273 classifier to be used in the PRIORITY trial.

摘要

背景

糖尿病肾病(DN)是糖尿病主要的晚期并发症之一。虽然有旨在减缓DN进展的治疗方法,但目前缺乏早期明确检测DN进展的方法。“基于尿蛋白质组分类器(CKD273)对2型糖尿病伴正常白蛋白尿患者早期糖尿病肾病进行蛋白质组学预测及肾素 - 血管紧张素 - 醛固酮系统抑制预防”试验(PRIORITY)旨在评估使用基于尿蛋白质组的分类器(CKD273)对2型糖尿病(T2D)患者进行DN的早期检测。

方法

在这项近期启动的PRIORITY试验的辅助研究中,我们旨在首次在多中心(9个不同机构,提供165例T2D患者的样本)前瞻性研究中验证CKD273分类器。此外,我们还研究了样本容器、年龄和性别对CKD273分类器的影响。

结果

我们观察到不同中心的CKD273分类评分具有高度一致性,曲线下面积范围为0.95至1.00。该分类器与年龄(测试范围为16 - 89岁)和性别无关。此外,使用不同的尿液储存容器不会影响分类评分。对分类器中各个肽段在九个不同中心的分布分析表明,血液来源和细胞外基质蛋白的片段是最一致被发现的。

结论

我们首次在多中心前瞻性研究中验证了这种基于尿蛋白质组的分类器,并表明CKD273分类器适用于PRIORITY试验。

相似文献

1
Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy.
Nephrol Dial Transplant. 2014 Aug;29(8):1563-70. doi: 10.1093/ndt/gfu039. Epub 2014 Mar 2.
7
Urinary proteomics for prediction of mortality in patients with type 2 diabetes and microalbuminuria.
Cardiovasc Diabetol. 2018 Apr 6;17(1):50. doi: 10.1186/s12933-018-0697-9.
8
[Early detection by urinary proteome analysis : A new concept in patient management of diabetic nephropathy].
Internist (Berl). 2020 Oct;61(10):1094-1105. doi: 10.1007/s00108-020-00863-4.
9
Urinary proteomics for early diagnosis in diabetic nephropathy.
Diabetes. 2012 Dec;61(12):3304-13. doi: 10.2337/db12-0348. Epub 2012 Aug 7.
10
Application of urinary proteomics as possible risk predictor of renal and cardiovascular complications in patients with type 2-diabetes and microalbuminuria.
J Diabetes Complications. 2018 Dec;32(12):1133-1140. doi: 10.1016/j.jdiacomp.2018.09.012. Epub 2018 Sep 24.

引用本文的文献

1
New insights into the role of immunity and inflammation in diabetic kidney disease in the omics era.
Front Immunol. 2024 Feb 29;15:1342837. doi: 10.3389/fimmu.2024.1342837. eCollection 2024.
2
Kidney Disease and Proteomics: A Recent Overview of a Useful Tool for Improving Early Diagnosis.
Adv Exp Med Biol. 2024;1443:173-186. doi: 10.1007/978-3-031-50624-6_9.
3
Recent progress in mass spectrometry-based urinary proteomics.
Clin Proteomics. 2024 Feb 22;21(1):14. doi: 10.1186/s12014-024-09462-z.
4
Differentiating primary and secondary FSGS using non-invasive urine biomarkers.
Clin Kidney J. 2023 Dec 4;17(2):sfad296. doi: 10.1093/ckj/sfad296. eCollection 2024 Feb.
5
Integration of metabolomics and peptidomics reveals distinct molecular landscape of human diabetic kidney disease.
Theranostics. 2023 May 21;13(10):3188-3203. doi: 10.7150/thno.80435. eCollection 2023.
8
Collagen-Derived Peptides in CKD: A Link to Fibrosis.
Toxins (Basel). 2021 Dec 23;14(1):10. doi: 10.3390/toxins14010010.
9
The Use of 'Omics for Diagnosing and Predicting Progression of Chronic Kidney Disease: A Scoping Review.
Front Genet. 2021 Nov 8;12:682929. doi: 10.3389/fgene.2021.682929. eCollection 2021.

本文引用的文献

1
Chronic kidney disease: global dimension and perspectives.
Lancet. 2013 Jul 20;382(9888):260-72. doi: 10.1016/S0140-6736(13)60687-X. Epub 2013 May 31.
2
CKD273, a new proteomics classifier assessing CKD and its prognosis.
PLoS One. 2013 May 14;8(5):e62837. doi: 10.1371/journal.pone.0062837. Print 2013.
3
Chronic kidney disease: a new look at pathogenetic mechanisms and treatment options.
Pediatr Nephrol. 2014 May;29(5):779-92. doi: 10.1007/s00467-013-2436-5. Epub 2013 Mar 8.
4
Mechanisms and treatment of CKD.
J Am Soc Nephrol. 2012 Dec;23(12):1917-28. doi: 10.1681/ASN.2012040390. Epub 2012 Oct 25.
5
A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus.
Diabetologia. 2013 Feb;56(2):259-67. doi: 10.1007/s00125-012-2755-2. Epub 2012 Oct 20.
6
Technical aspects and inter-laboratory variability in native peptide profiling: the CE-MS experience.
Clin Biochem. 2013 Apr;46(6):432-43. doi: 10.1016/j.clinbiochem.2012.09.025. Epub 2012 Oct 4.
7
Urinary proteomics for early diagnosis in diabetic nephropathy.
Diabetes. 2012 Dec;61(12):3304-13. doi: 10.2337/db12-0348. Epub 2012 Aug 7.
8
A comparison between MALDI-MS and CE-MS data for biomarker assessment in chronic kidney diseases.
J Proteomics. 2012 Oct 22;75(18):5888-97. doi: 10.1016/j.jprot.2012.07.024. Epub 2012 Jul 26.
9
How to get proteomics to the clinic? Issues in clinical proteomics, exemplified by CE-MS.
Proteomics Clin Appl. 2012 Oct;6(9-10):437-42. doi: 10.1002/prca.201200027. Epub 2012 Sep 24.
10
Implementation of proteomic biomarkers: making it work.
Eur J Clin Invest. 2012 Sep;42(9):1027-36. doi: 10.1111/j.1365-2362.2012.02674.x. Epub 2012 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验