Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.
Steno Diabetes Center, Gentofte, Copenhagen, Denmark.
Cardiovasc Diabetol. 2018 Apr 6;17(1):50. doi: 10.1186/s12933-018-0697-9.
The urinary proteomic classifier CKD273 has shown promise for prediction of progressive diabetic nephropathy (DN). Whether it is also a determinant of mortality and cardiovascular disease in patients with microalbuminuria (MA) is unknown.
Urine samples were obtained from 155 patients with type 2 diabetes and confirmed microalbuminuria. Proteomic analysis was undertaken using capillary electrophoresis coupled to mass spectrometry to determine the CKD273 classifier score. A previously defined CKD273 threshold of 0.343 for identification of DN was used to categorise the cohort in Kaplan-Meier and Cox regression models with all-cause mortality as the primary endpoint. Outcomes were traced through national health registers after 6 years.
CKD273 correlated with urine albumin excretion rate (UAER) (r = 0.481, p = <0.001), age (r = 0.238, p = 0.003), coronary artery calcium (CAC) score (r = 0.236, p = 0.003), N-terminal pro-brain natriuretic peptide (NT-proBNP) (r = 0.190, p = 0.018) and estimated glomerular filtration rate (eGFR) (r = 0.265, p = 0.001). On multivariate analysis only UAER (β = 0.402, p < 0.001) and eGFR (β = - 0.184, p = 0.039) were statistically significant determinants of CKD273. Twenty participants died during follow-up. CKD273 was a determinant of mortality (log rank [Mantel-Cox] p = 0.004), and retained significance (p = 0.048) after adjustment for age, sex, blood pressure, NT-proBNP and CAC score in a Cox regression model.
A multidimensional biomarker can provide information on outcomes associated with its primary diagnostic purpose. Here we demonstrate that the urinary proteomic classifier CKD273 is associated with mortality in individuals with type 2 diabetes and MA even when adjusted for other established cardiovascular and renal biomarkers.
尿蛋白组学分类器 CKD273 已显示出对预测进行性糖尿病肾病(DN)的潜力。但它是否也是伴有微量白蛋白尿(MA)的患者死亡和心血管疾病的决定因素尚不清楚。
从 155 名 2 型糖尿病伴确诊微量白蛋白尿的患者中采集尿液样本。使用毛细管电泳-质谱联用技术进行蛋白质组学分析,以确定 CKD273 分类器评分。使用之前定义的 CKD273 阈值(0.343 用于识别 DN),将队列分为 Kaplan-Meier 和 Cox 回归模型,以全因死亡率为主要终点。6 年后通过国家健康登记系统追踪结果。
CKD273 与尿白蛋白排泄率(UAER)(r=0.481,p<0.001)、年龄(r=0.238,p=0.003)、冠状动脉钙评分(CAC)(r=0.236,p=0.003)、N 末端脑利钠肽前体(NT-proBNP)(r=0.190,p=0.018)和估算肾小球滤过率(eGFR)(r=0.265,p=0.001)相关。多变量分析仅显示 UAER(β=0.402,p<0.001)和 eGFR(β=-0.184,p=0.039)是 CKD273 的统计学显著决定因素。20 名参与者在随访期间死亡。CKD273 是死亡率的决定因素(对数秩检验[Mantel-Cox]p=0.004),在 Cox 回归模型中调整年龄、性别、血压、NT-proBNP 和 CAC 评分后,仍具有统计学意义(p=0.048)。
多维生物标志物可以提供与其主要诊断目的相关的结果信息。在这里,我们证明即使在调整其他已建立的心血管和肾脏生物标志物后,尿蛋白组学分类器 CKD273 与 2 型糖尿病伴 MA 患者的死亡率相关。