Suppr超能文献

用于预测 2 型糖尿病合并微量白蛋白尿患者死亡率的尿蛋白质组学。

Urinary proteomics for prediction of mortality in patients with type 2 diabetes and microalbuminuria.

机构信息

Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.

Steno Diabetes Center, Gentofte, Copenhagen, Denmark.

出版信息

Cardiovasc Diabetol. 2018 Apr 6;17(1):50. doi: 10.1186/s12933-018-0697-9.

Abstract

BACKGROUND

The urinary proteomic classifier CKD273 has shown promise for prediction of progressive diabetic nephropathy (DN). Whether it is also a determinant of mortality and cardiovascular disease in patients with microalbuminuria (MA) is unknown.

METHODS

Urine samples were obtained from 155 patients with type 2 diabetes and confirmed microalbuminuria. Proteomic analysis was undertaken using capillary electrophoresis coupled to mass spectrometry to determine the CKD273 classifier score. A previously defined CKD273 threshold of 0.343 for identification of DN was used to categorise the cohort in Kaplan-Meier and Cox regression models with all-cause mortality as the primary endpoint. Outcomes were traced through national health registers after 6 years.

RESULTS

CKD273 correlated with urine albumin excretion rate (UAER) (r = 0.481, p = <0.001), age (r = 0.238, p = 0.003), coronary artery calcium (CAC) score (r = 0.236, p = 0.003), N-terminal pro-brain natriuretic peptide (NT-proBNP) (r = 0.190, p = 0.018) and estimated glomerular filtration rate (eGFR) (r = 0.265, p = 0.001). On multivariate analysis only UAER (β = 0.402, p < 0.001) and eGFR (β = - 0.184, p = 0.039) were statistically significant determinants of CKD273. Twenty participants died during follow-up. CKD273 was a determinant of mortality (log rank [Mantel-Cox] p = 0.004), and retained significance (p = 0.048) after adjustment for age, sex, blood pressure, NT-proBNP and CAC score in a Cox regression model.

CONCLUSION

A multidimensional biomarker can provide information on outcomes associated with its primary diagnostic purpose. Here we demonstrate that the urinary proteomic classifier CKD273 is associated with mortality in individuals with type 2 diabetes and MA even when adjusted for other established cardiovascular and renal biomarkers.

摘要

背景

尿蛋白组学分类器 CKD273 已显示出对预测进行性糖尿病肾病(DN)的潜力。但它是否也是伴有微量白蛋白尿(MA)的患者死亡和心血管疾病的决定因素尚不清楚。

方法

从 155 名 2 型糖尿病伴确诊微量白蛋白尿的患者中采集尿液样本。使用毛细管电泳-质谱联用技术进行蛋白质组学分析,以确定 CKD273 分类器评分。使用之前定义的 CKD273 阈值(0.343 用于识别 DN),将队列分为 Kaplan-Meier 和 Cox 回归模型,以全因死亡率为主要终点。6 年后通过国家健康登记系统追踪结果。

结果

CKD273 与尿白蛋白排泄率(UAER)(r=0.481,p<0.001)、年龄(r=0.238,p=0.003)、冠状动脉钙评分(CAC)(r=0.236,p=0.003)、N 末端脑利钠肽前体(NT-proBNP)(r=0.190,p=0.018)和估算肾小球滤过率(eGFR)(r=0.265,p=0.001)相关。多变量分析仅显示 UAER(β=0.402,p<0.001)和 eGFR(β=-0.184,p=0.039)是 CKD273 的统计学显著决定因素。20 名参与者在随访期间死亡。CKD273 是死亡率的决定因素(对数秩检验[Mantel-Cox]p=0.004),在 Cox 回归模型中调整年龄、性别、血压、NT-proBNP 和 CAC 评分后,仍具有统计学意义(p=0.048)。

结论

多维生物标志物可以提供与其主要诊断目的相关的结果信息。在这里,我们证明即使在调整其他已建立的心血管和肾脏生物标志物后,尿蛋白组学分类器 CKD273 与 2 型糖尿病伴 MA 患者的死亡率相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7748/5889591/913f61bf97b0/12933_2018_697_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验