Lobos Rodrigo A, Hoge W Scott, Javed Ahsan, Liao Congyu, Setsompop Kawin, Nayak Krishna S, Haldar Justin P
Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA.
Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA.
Magn Reson Med. 2021 Jun;85(6):3403-3419. doi: 10.1002/mrm.28638. Epub 2020 Dec 17.
We propose and evaluate a new structured low-rank method for echo-planar imaging (EPI) ghost correction called Robust Autocalibrated LORAKS (RAC-LORAKS). The method can be used to suppress EPI ghosts arising from the differences between different readout gradient polarities and/or the differences between different shots. It does not require conventional EPI navigator signals, and is robust to imperfect autocalibration data.
Autocalibrated LORAKS is a previous structured low-rank method for EPI ghost correction that uses GRAPPA-type autocalibration data to enable high-quality ghost correction. This method works well when the autocalibration data are pristine, but performance degrades substantially when the autocalibration information is imperfect. RAC-LORAKS generalizes Autocalibrated LORAKS in two ways. First, it does not completely trust the information from autocalibration data, and instead considers the autocalibration and EPI data simultaneously when estimating low-rank matrix structure. Second, it uses complementary information from the autocalibration data to improve EPI reconstruction in a multi-contrast joint reconstruction framework. RAC-LORAKS is evaluated using simulations and in vivo data, including comparisons to state-of-the-art methods.
RAC-LORAKS is demonstrated to have good ghost elimination performance compared to state-of-the-art methods in several complicated EPI acquisition scenarios (including gradient-echo brain imaging, diffusion-encoded brain imaging, and cardiac imaging).
RAC-LORAKS provides effective suppression of EPI ghosts and is robust to imperfect autocalibration data.
我们提出并评估一种用于回波平面成像(EPI)鬼影校正的新的结构化低秩方法,称为稳健自校准LORAKS(RAC-LORAKS)。该方法可用于抑制因不同读出梯度极性之间的差异和/或不同激发之间的差异而产生的EPI鬼影。它不需要传统的EPI导航信号,并且对不完美的自校准数据具有鲁棒性。
自校准LORAKS是一种先前用于EPI鬼影校正的结构化低秩方法,它使用GRAPPA类型的自校准数据来实现高质量的鬼影校正。当自校准数据纯净时,该方法效果良好,但当自校准信息不完美时,性能会大幅下降。RAC-LORAKS通过两种方式对自校准LORAKS进行了推广。首先,它不完全信任自校准数据中的信息,而是在估计低秩矩阵结构时同时考虑自校准数据和EPI数据。其次,它在多对比度联合重建框架中使用自校准数据的互补信息来改进EPI重建。使用模拟和体内数据对RAC-LORAKS进行了评估,包括与现有最先进方法的比较。
在几种复杂的EPI采集场景(包括梯度回波脑成像、扩散编码脑成像和心脏成像)中,与现有最先进方法相比,RAC-LORAKS被证明具有良好的鬼影消除性能。
RAC-LORAKS能有效抑制EPI鬼影,并且对不完美的自校准数据具有鲁棒性。