Suppr超能文献

稳健的自动校准结构化低秩回波平面成像鬼影校正

Robust autocalibrated structured low-rank EPI ghost correction.

作者信息

Lobos Rodrigo A, Hoge W Scott, Javed Ahsan, Liao Congyu, Setsompop Kawin, Nayak Krishna S, Haldar Justin P

机构信息

Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA.

Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA.

出版信息

Magn Reson Med. 2021 Jun;85(6):3403-3419. doi: 10.1002/mrm.28638. Epub 2020 Dec 17.

Abstract

PURPOSE

We propose and evaluate a new structured low-rank method for echo-planar imaging (EPI) ghost correction called Robust Autocalibrated LORAKS (RAC-LORAKS). The method can be used to suppress EPI ghosts arising from the differences between different readout gradient polarities and/or the differences between different shots. It does not require conventional EPI navigator signals, and is robust to imperfect autocalibration data.

METHODS

Autocalibrated LORAKS is a previous structured low-rank method for EPI ghost correction that uses GRAPPA-type autocalibration data to enable high-quality ghost correction. This method works well when the autocalibration data are pristine, but performance degrades substantially when the autocalibration information is imperfect. RAC-LORAKS generalizes Autocalibrated LORAKS in two ways. First, it does not completely trust the information from autocalibration data, and instead considers the autocalibration and EPI data simultaneously when estimating low-rank matrix structure. Second, it uses complementary information from the autocalibration data to improve EPI reconstruction in a multi-contrast joint reconstruction framework. RAC-LORAKS is evaluated using simulations and in vivo data, including comparisons to state-of-the-art methods.

RESULTS

RAC-LORAKS is demonstrated to have good ghost elimination performance compared to state-of-the-art methods in several complicated EPI acquisition scenarios (including gradient-echo brain imaging, diffusion-encoded brain imaging, and cardiac imaging).

CONCLUSIONS

RAC-LORAKS provides effective suppression of EPI ghosts and is robust to imperfect autocalibration data.

摘要

目的

我们提出并评估一种用于回波平面成像(EPI)鬼影校正的新的结构化低秩方法,称为稳健自校准LORAKS(RAC-LORAKS)。该方法可用于抑制因不同读出梯度极性之间的差异和/或不同激发之间的差异而产生的EPI鬼影。它不需要传统的EPI导航信号,并且对不完美的自校准数据具有鲁棒性。

方法

自校准LORAKS是一种先前用于EPI鬼影校正的结构化低秩方法,它使用GRAPPA类型的自校准数据来实现高质量的鬼影校正。当自校准数据纯净时,该方法效果良好,但当自校准信息不完美时,性能会大幅下降。RAC-LORAKS通过两种方式对自校准LORAKS进行了推广。首先,它不完全信任自校准数据中的信息,而是在估计低秩矩阵结构时同时考虑自校准数据和EPI数据。其次,它在多对比度联合重建框架中使用自校准数据的互补信息来改进EPI重建。使用模拟和体内数据对RAC-LORAKS进行了评估,包括与现有最先进方法的比较。

结果

在几种复杂的EPI采集场景(包括梯度回波脑成像、扩散编码脑成像和心脏成像)中,与现有最先进方法相比,RAC-LORAKS被证明具有良好的鬼影消除性能。

结论

RAC-LORAKS能有效抑制EPI鬼影,并且对不完美的自校准数据具有鲁棒性。

相似文献

2
ROBUST AUTOCALIBRATED LORAKS FOR EPI GHOST CORRECTION.用于EPI鬼影校正的稳健自校准LORAKS
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:663-666. doi: 10.1109/ISBI.2018.8363661. Epub 2018 May 24.
6
k-Space deep learning for reference-free EPI ghost correction.k 空间深度学习用于无参考 EPI 鬼影校正。
Magn Reson Med. 2019 Dec;82(6):2299-2313. doi: 10.1002/mrm.27896. Epub 2019 Jul 18.

引用本文的文献

本文引用的文献

2
Single-shot EPI for ASL-CMR.用于动脉自旋标记磁共振成像的单次激发回波平面成像
Magn Reson Med. 2020 Aug;84(2):738-750. doi: 10.1002/mrm.28165. Epub 2020 Feb 14.
5
ROBUST AUTOCALIBRATED LORAKS FOR EPI GHOST CORRECTION.用于EPI鬼影校正的稳健自校准LORAKS
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:663-666. doi: 10.1109/ISBI.2018.8363661. Epub 2018 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验