Department of Pathology and Medicine, University of California San Diego, La Jolla, California 92093.
Department of Energy Institute for Genomics and Proteomics, Howard Hughes Medical Institute, and Molecular Biology Institute, UCLA, Los Angeles, California 90095.
J Biol Chem. 2014 Apr 11;289(15):10660-10667. doi: 10.1074/jbc.M114.549030. Epub 2014 Mar 4.
The transmission of infectious prions into different host species requires compatible prion protein (PrP) primary structures, and even one heterologous residue at a pivotal position can block prion infection. Mapping the key amino acid positions that govern cross-species prion conversion has not yet been possible, although certain residue positions have been identified as restrictive, including residues in the β2-α2 loop region of PrP. To further define how β2-α2 residues impact conversion, we investigated residue substitutions in PrP(C) using an in vitro prion conversion assay. Within the β2-α2 loop, a tyrosine residue at position 169 is strictly conserved among mammals, and transgenic mice expressing mouse PrP having the Y169G, S170N, and N174T substitutions resist prion infection. To better understand the structural requirements of specific residues for conversion initiated by mouse prions, we substituted a diverse array of amino acids at position 169 of PrP. We found that the substitution of glycine, leucine, or glutamine at position 169 reduced conversion by ∼ 75%. In contrast, replacing tyrosine 169 with either of the bulky, aromatic residues, phenylalanine or tryptophan, supported efficient prion conversion. We propose a model based on a requirement for tightly interdigitating complementary amino acid side chains within specific domains of adjacent PrP molecules, known as "steric zippers," to explain these results. Collectively, these studies suggest that an aromatic residue at position 169 supports efficient prion conversion.
传染性朊病毒向不同宿主物种的传播需要兼容的朊病毒蛋白(PrP)一级结构,即使在关键位置存在一个异源残基也可以阻止朊病毒感染。尽管已经确定了某些残基位置是限制性的,包括 PrP 的β2-α2 环区域中的残基,但映射控制跨物种朊病毒转化的关键氨基酸位置尚未实现。为了进一步确定β2-α2 残基如何影响转化,我们使用体外朊病毒转化测定法研究了 PrP(C)中的残基取代。在β2-α2 环中,位置 169 的酪氨酸残基在哺乳动物中严格保守,表达具有 Y169G、S170N 和 N174T 取代的小鼠 PrP 的转基因小鼠抵抗朊病毒感染。为了更好地理解特定残基对由小鼠朊病毒引发的转化的结构要求,我们在 PrP 的位置 169 处取代了一系列不同的氨基酸。我们发现,位置 169 处的甘氨酸、亮氨酸或谷氨酰胺取代将转化率降低了约 75%。相比之下,用大体积芳香族残基苯丙氨酸或色氨酸取代酪氨酸 169 则支持有效的朊病毒转化。我们提出了一个基于相邻 PrP 分子特定结构域中紧密交错互补氨基酸侧链的要求的模型,称为“立体拉链”,以解释这些结果。总之,这些研究表明,位置 169 处的芳香族残基支持有效的朊病毒转化。