Department of Chemistry, Stanford University, Stanford, CA 94305 (USA).
Chemphyschem. 2014 Mar 17;15(4):771-83. doi: 10.1002/cphc.201301090. Epub 2014 Mar 5.
The performance of a method is assessed which allows for the spatiotemporal tracking of single dye-labeled molecules during two-dimensional (2D) diffusional transits through the focal area of a modified confocal microscope. In addition to facilitating the observation of molecular diffusion paths at the shot-noise limit of bright organic emitters with spatial and temporal precisions of ∼10-20 nm and <0.5 ms, respectively, the direct access to the complete stream of detected photons is beneficial for characterizing nanoscale details such as transient pausing (binding). We discuss technical aspects of this approach, along with results from its application to measuring lipid membrane dynamics in live mammalian cells. Presented topics include a discussion of the advantages of the single-photon collection mode and instrument as well as computational considerations for the localization process. A proof-of-principle experiment shows that optical nanoscopy by stochastic single-molecule switching and position readout could be implementable in parallel with such fast molecular tracking. This would allow direct access to contextual imaging data of local cytoskeletal structural elements or localized longer-lived protein assemblies.
该方法能够在经过改良的共聚焦显微镜的焦平面内对单个染料标记分子进行二维(2D)扩散输运过程中的时空跟踪,我们对其性能进行了评估。该方法不仅可以使人们在利用明亮的有机发射器进行分子扩散路径观察时达到接近散粒噪声极限的水平,同时还具有空间和时间分辨率分别约为 10-20nm 和 <0.5ms 的优势,此外,这种方法还可以直接获取完整的探测光子流,从而有利于对瞬态暂停(结合)等纳米级细节进行特征描述。我们将对该方法的技术方面及其在测量活哺乳动物细胞中脂质膜动力学方面的应用结果进行讨论。本文将介绍的内容包括对单光子收集模式和仪器优势的讨论,以及对定位过程的计算考虑。一个原理验证实验表明,通过随机单分子开关和位置读出的光学纳米显微镜可以与这种快速分子跟踪并行实现。这将允许直接访问局部细胞骨架结构元素或本地化的寿命较长的蛋白质组装的上下文成像数据。