Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France.
Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.
J Am Chem Soc. 2022 Oct 5;144(39):18043-18053. doi: 10.1021/jacs.2c07542. Epub 2022 Sep 26.
Super-resolution fluorescence imaging based on single-molecule localization microscopy (SMLM) enables visualizing cellular structures with nanometric precision. However, its spatial and temporal resolution largely relies on the brightness of ON/OFF switchable fluorescent dyes. Moreover, in cell plasma membranes, the single-molecule localization is hampered by the fast lateral diffusion of membrane probes. Here, to address these two fundamental problems, we propose a concept of ON/OFF switchable probes for SMLM (points accumulation for imaging in nanoscale topography, PAINT) based on fluorogenic dimers of bright cyanine dyes. In these probes, the two cyanine units connected with a linker were modified at their extremities with low-affinity membrane anchors. Being self-quenched in water due to intramolecular dye H-aggregation, they displayed light up on reversible binding to lipid membranes. The charged group in the linker further decreased the probe affinity to the lipid membranes, thus accelerating its dynamic reversible ON/OFF switching. The concept was validated on cyanines 3 and 5. SMLM of live cells revealed that the new probes provided higher brightness and ∼10-fold slower diffusion at the cell surface, compared to reference probes Nile Red and DiD, which boosted axial localization precision >3-fold down to 31 nm. The new probe allowed unprecedented observation of nanoscale fibrous protrusions on plasma membranes of live cells with 40 s time resolution, revealing their fast dynamics. Thus, going beyond the brightness limit of single switchable dyes by cooperative dequenching in fluorogenic dimers and slowing down probe diffusion in biomembranes open the route to significant enhancement of super-resolution fluorescence microscopy of live cells.
基于单分子定位显微镜(SMLM)的超分辨率荧光成像能够以纳米级精度可视化细胞结构。然而,其空间和时间分辨率在很大程度上依赖于开/关可切换荧光染料的亮度。此外,在细胞膜中,单分子定位受到膜探针快速侧向扩散的阻碍。在这里,为了解决这两个基本问题,我们提出了一种基于亮青色染料荧光二聚体的 SMLM 开/关可切换探针(用于纳米形貌成像的点积累,PAINT)的概念。在这些探针中,通过连接子连接的两个青色单元在其末端用低亲和力的膜锚进行修饰。由于分子内染料 H-聚集,它们在水中自猝灭,在可逆结合到脂质膜时显示出点亮。连接子中的电荷基团进一步降低了探针与脂质膜的亲和力,从而加速其动态可逆的开/关转换。该概念在青色染料 3 和 5 上得到了验证。活细胞的 SMLM 揭示,与参考探针 Nile Red 和 DiD 相比,新探针在细胞表面提供了更高的亮度和~10 倍的扩散速度减慢,这将轴向定位精度提高了>3 倍,达到 31nm。新探针允许以前所未有的时间分辨率 40s 观察活细胞质膜上的纳米级纤维状突起,揭示其快速动力学。因此,通过荧光二聚体中的协同去猝灭和在生物膜中减慢探针扩散来超越单开关染料的亮度限制,为活细胞的超分辨率荧光显微镜的显著增强开辟了道路。