Suppr超能文献

为什么在自然资源合作项目中数据共享如此困难,我们能做些什么来改善这种情况?

Why is data sharing in collaborative natural resource efforts so hard and what can we do to improve it?

作者信息

Volk Carol J, Lucero Yasmin, Barnas Katie

机构信息

South Fork Research, Inc., 44842 SE 145th St, North Bend, WA, 98045, USA,

出版信息

Environ Manage. 2014 May;53(5):883-93. doi: 10.1007/s00267-014-0258-2. Epub 2014 Mar 7.

Abstract

Increasingly, research and management in natural resource science rely on very large datasets compiled from multiple sources. While it is generally good to have more data, utilizing large, complex datasets has introduced challenges in data sharing, especially for collaborating researchers in disparate locations ("distributed research teams"). We surveyed natural resource scientists about common data-sharing problems. The major issues identified by our survey respondents (n = 118) when providing data were lack of clarity in the data request (including format of data requested). When receiving data, survey respondents reported various insufficiencies in documentation describing the data (e.g., no data collection description/no protocol, data aggregated, or summarized without explanation). Since metadata, or "information about the data," is a central obstacle in efficient data handling, we suggest documenting metadata through data dictionaries, protocols, read-me files, explicit null value documentation, and process metadata as essential to any large-scale research program. We advocate for all researchers, but especially those involved in distributed teams to alleviate these problems with the use of several readily available communication strategies including the use of organizational charts to define roles, data flow diagrams to outline procedures and timelines, and data update cycles to guide data-handling expectations. In particular, we argue that distributed research teams magnify data-sharing challenges making data management training even more crucial for natural resource scientists. If natural resource scientists fail to overcome communication and metadata documentation issues, then negative data-sharing experiences will likely continue to undermine the success of many large-scale collaborative projects.

摘要

自然资源科学领域的研究与管理越来越依赖于从多个来源汇编的超大型数据集。虽然通常来说数据越多越好,但利用大型复杂数据集给数据共享带来了挑战,尤其是对于身处不同地点的合作研究人员(“分布式研究团队”)而言。我们就常见的数据共享问题对自然资源科学家进行了调查。在提供数据时,我们的调查对象(n = 118)指出的主要问题是数据请求不清晰(包括所请求数据的格式)。在接收数据时,调查对象报告称描述数据的文档存在各种不足(例如,没有数据收集描述/没有方案,数据汇总或总结却没有解释)。由于元数据,即“关于数据的信息”,是高效数据处理的核心障碍,我们建议通过数据字典、方案、自述文件、明确的空值文档以及过程元数据来记录元数据,这对于任何大规模研究项目都至关重要。我们倡导所有研究人员,尤其是那些参与分布式团队的研究人员,通过使用几种现成的沟通策略来缓解这些问题,包括使用组织结构图来定义角色、数据流程图来概述程序和时间线,以及数据更新周期来指导数据处理预期。特别是,我们认为分布式研究团队放大了数据共享挑战,使得数据管理培训对自然资源科学家来说更为关键。如果自然资源科学家未能克服沟通和元数据记录问题,那么负面的数据共享经历可能会继续破坏许多大型合作项目的成功。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验