Suppr超能文献

一种用于对可能存在信息删失的事件发生时间数据进行敏感性分析的多重填补方法。

A multiple imputation method for sensitivity analyses of time-to-event data with possibly informative censoring.

作者信息

Zhao Yue, Herring Amy H, Zhou Haibo, Ali Mirza W, Koch Gary G

机构信息

a Duke Clinical Research Institute , Durham , North Carolina , USA.

出版信息

J Biopharm Stat. 2014;24(2):229-53. doi: 10.1080/10543406.2013.860769.

Abstract

This article presents a multiple imputation method for sensitivity analyses of time-to-event data with possibly informative censoring. The imputed time for censored values is drawn from the failure time distribution conditional on the time of follow-up discontinuation. A variety of specifications regarding the post-discontinuation tendency of having events can be incorporated in the imputation through a hazard ratio parameter for discontinuation versus continuation of follow-up. Multiple-imputed data sets are analyzed with the primary analysis method, and the results are then combined using the methods of Rubin. An illustrative example is provided.

摘要

本文提出了一种多重填补方法,用于对可能存在信息删失的事件发生时间数据进行敏感性分析。删失值的填补时间是根据随访终止时间从失效时间分布中抽取的。通过一个用于随访终止与继续的风险比参数,可以在填补过程中纳入关于事件发生的终止后趋势的各种设定。使用主要分析方法对多重填补数据集进行分析,然后使用鲁宾方法合并结果。文中给出了一个示例。

相似文献

3
Reference-based sensitivity analysis for time-to-event data.
Pharm Stat. 2019 Nov;18(6):645-658. doi: 10.1002/pst.1954. Epub 2019 Jul 15.
5
Estimation of colorectal adenoma recurrence with dependent censoring.
BMC Med Res Methodol. 2009 Sep 29;9:66. doi: 10.1186/1471-2288-9-66.
6
Dimension reduction in survival regressions with censored data via an imputed spline approach.
Biom J. 2011 May;53(3):426-43. doi: 10.1002/bimj.201000168. Epub 2011 Apr 15.
7
Using cure models and multiple imputation to utilize recurrence as an auxiliary variable for overall survival.
Clin Trials. 2011 Oct;8(5):581-90. doi: 10.1177/1740774511414741. Epub 2011 Sep 15.
8
Sensitivity analysis for missing outcomes in time-to-event data with covariate adjustment.
J Biopharm Stat. 2016;26(2):269-79. doi: 10.1080/10543406.2014.1000549. Epub 2015 Jan 30.
9
Survival analysis using auxiliary variables via non-parametric multiple imputation.
Stat Med. 2006 Oct 30;25(20):3503-17. doi: 10.1002/sim.2452.
10
Sensitivity analyses for informative censoring in survival data: A trial example.
J Biopharm Stat. 2017;27(4):595-610. doi: 10.1080/10543406.2016.1167076. Epub 2016 Mar 24.

引用本文的文献

4
Survival analysis under imperfect record linkage using historic census data.
BMC Med Res Methodol. 2024 Mar 13;24(1):67. doi: 10.1186/s12874-024-02194-6.
5
Imputation of Missing Data for Time-to-Event Endpoints Using Retrieved Dropouts.
Ther Innov Regul Sci. 2024 Jan;58(1):114-126. doi: 10.1007/s43441-023-00575-5. Epub 2023 Oct 7.
6
8
Semisupervised Calibration of Risk with Noisy Event Times (SCORNET) using electronic health record data.
Biostatistics. 2023 Jul 14;24(3):760-775. doi: 10.1093/biostatistics/kxac003.
10
SMIM: A unified framework of survival sensitivity analysis using multiple imputation and martingale.
Biometrics. 2023 Mar;79(1):230-240. doi: 10.1111/biom.13555. Epub 2021 Sep 20.

本文引用的文献

1
Missing data handling methods in medical device clinical trials.
J Biopharm Stat. 2009 Nov;19(6):1085-98. doi: 10.1080/10543400903243009.
2
Missing data in biologic oncology products.
J Biopharm Stat. 2009 Nov;19(6):1074-84. doi: 10.1080/10543400903242993.
3
Missing data in confirmatory clinical trials.
J Biopharm Stat. 2009 Nov;19(6):969-79. doi: 10.1080/10543400903242746.
4
Missing inaction: preventing missing outcome data in randomized clinical trials.
J Biopharm Stat. 2009 Nov;19(6):957-68. doi: 10.1080/10543400903239825.
5
Addressing and advancing the problem of missing data.
J Biopharm Stat. 2009 Nov;19(6):945-56. doi: 10.1080/10543400903238959.
6
Sensitivity analysis of progression-free survival with dependent withdrawal.
Stat Med. 2008 Apr 15;27(8):1180-98. doi: 10.1002/sim.3015.
7
Sensitivity analysis for informative censoring in parametric survival models.
Biostatistics. 2005 Jan;6(1):77-91. doi: 10.1093/biostatistics/kxh019.
10
Multiple imputation: a primer.
Stat Methods Med Res. 1999 Mar;8(1):3-15. doi: 10.1177/096228029900800102.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验