Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
J Biol Inorg Chem. 2014 Jun;19(4-5):491-504. doi: 10.1007/s00775-014-1122-9. Epub 2014 Mar 11.
Extradiol-cleaving catechol dioxygenases function by binding both the organic substrate and O2 at a divalent metal center in the active site. They have proven to be a particularly versatile group of enzymes with which to study the O2 activation process. Here, recent studies of homoprotocatechuate 2,3-dioxygenase are summarized, showing how nature can utilize the enzyme structure and the properties of the metal and the substrate to select among many possible chemical paths to achieve both specificity and efficiency. Possible intermediates in the mechanism have been trapped by swapping active-site metals, introducing active-site amino acid substituted variants, and using substrates with different electron-donating capacities. Although each of these intermediates could form part of a viable reaction pathway, kinetic measurements significantly limit the likely candidates. Structural, kinetic, spectroscopic, and computational analyses of the various intermediates shed light on how catalytic efficiency can be achieved.
具有邻位二醇结构的儿茶酚 1,2-双加氧酶通过在活性部位的二价金属中心结合有机底物和 O2 来发挥作用。它们已被证明是一组特别多功能的酶,可以用来研究 O2 激活过程。在这里,总结了最近对原儿茶酸 2,3-双加氧酶的研究,展示了自然界如何利用酶结构以及金属和底物的特性来从许多可能的化学途径中进行选择,以实现特异性和效率。通过交换活性部位金属、引入活性部位氨基酸取代变体以及使用具有不同电子供体能力的底物,可以捕获可能的反应机制中间体。尽管这些中间体能形成可行的反应途径的一部分,但动力学测量极大地限制了可能的候选物。对各种中间产物的结构、动力学、光谱和计算分析揭示了如何实现催化效率。