Punj Deep, Ghenuche Petru, Moparthi Satish Babu, de Torres Juan, Grigoriev Victor, Rigneault Hervé, Wenger Jérôme
CNRS, Aix Marseille Université, Centrale Marseille, Institut Fresnel, UMR 7249, 13013, Marseille, France.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014 May-Jun;6(3):268-82. doi: 10.1002/wnan.1261. Epub 2014 Feb 24.
Single-molecule approaches to biology offer a powerful new vision to elucidate the mechanisms that underpin the functioning of living cells. However, conventional optical single molecule spectroscopy techniques such as Förster fluorescence resonance energy transfer (FRET) or fluorescence correlation spectroscopy (FCS) are limited by diffraction to the nanomolar concentration range, far below the physiological micromolar concentration range where most biological reaction occur. To breach the diffraction limit, zero-mode waveguides (ZMW) and plasmonic antennas exploit the surface plasmon resonances to confine and enhance light down to the nanometer scale. The ability of plasmonics to achieve extreme light concentration unlocks an enormous potential to enhance fluorescence detection, FRET, and FCS. Single molecule spectroscopy techniques greatly benefit from ZMW and plasmonic antennas to enter a new dimension of molecular concentration reaching physiological conditions. The application of nano-optics to biological problems with FRET and FCS is an emerging and exciting field, and is promising to reveal new insights on biological functions and dynamics.
用于生物学研究的单分子方法为阐明支撑活细胞功能的机制提供了一种强大的新视角。然而,传统的光学单分子光谱技术,如福斯特荧光共振能量转移(FRET)或荧光相关光谱(FCS),受衍射限制只能达到纳摩尔浓度范围,远低于大多数生物反应发生的生理微摩尔浓度范围。为突破衍射极限,零模波导(ZMW)和等离子体天线利用表面等离子体共振将光限制并增强至纳米尺度。等离子体实现极端光浓缩的能力为增强荧光检测、FRET和FCS带来了巨大潜力。单分子光谱技术极大地受益于ZMW和等离子体天线,从而进入了达到生理条件的分子浓度新维度。将纳米光学应用于FRET和FCS相关的生物学问题是一个新兴且令人兴奋的领域,有望揭示有关生物功能和动力学的新见解。