Suppr超能文献

可编程 DNA-硅化纳米腔用于单分子等离子体传感。

A Programmable DNA-Silicification-Based Nanocavity for Single-Molecule Plasmonic Sensing.

机构信息

Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.

Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.

出版信息

Adv Mater. 2021 Feb;33(7):e2005133. doi: 10.1002/adma.202005133. Epub 2021 Jan 18.

Abstract

Plasmonic nanocavities are highly desirable for optical sensing because of their singular ability to confine light into deep subwavelength volumes. Yet, it remains profoundly challenging to fabricate structurally resilient nanocavities with high fidelity, and to obtain direct, noninvasive visualization of the plasmonic hotspots within such constructs. Herein, highly precise and robust nanocavities, entitled DNA-silicified template for Raman optical beacon (DNA-STROBE), are engineered by using silicified DNA scaffolds for spatial organization of discrete plasmonic nanoparticles. In addition to substantially enhancing structural stability and chemical inertness, DNA silicification significantly improves nanogap control, resulting simultaneously in large and controlled local electromagnetic field enhancement. The ultrasmall mode volume of the DNA-STROBE constructs promotes single-molecule occupancy enabling surface-enhanced Raman spectroscopy (SERS) observations of single-molecule activity even at elevated background concentration, significantly relaxing the restrictive pico- to nanomolar molecular concentration condition typically required for such investigations. Additionally, leveraging super-resolution SERS measurements allows noninvasive and diffraction-unlimited spatial profiling of otherwise unresolvable plasmonic hotspots. The highly programmable and reproducible nature of the DNA-STROBE, coupled with its quantitative label-free molecular readouts, provides a versatile platform with applications across the spectrum of nanophotonics and biomedical sciences.

摘要

等离子体纳米腔因其将光限制在深亚波长体积的独特能力而在光学传感中非常理想。然而,制造具有高保真度的结构弹性纳米腔,并获得此类结构中等离子体热点的直接、非侵入式可视化仍然极具挑战性。在此,通过使用硅化 DNA 支架来对离散等离子体纳米颗粒进行空间组织,设计出了高度精确和稳健的纳米腔,命名为 DNA-硅化模板用于喇曼光学信标 (DNA-STROBE)。除了显著提高结构稳定性和化学惰性外,DNA 硅化还显著改善了纳米间隙控制,从而同时实现了大的和受控的局部电磁场增强。DNA-STROBE 结构的超小模式体积促进了单分子占据,使得即使在背景浓度升高的情况下,也能够进行单分子活性的表面增强拉曼光谱 (SERS) 观察,这显著放宽了通常用于此类研究的皮摩尔至纳摩尔分子浓度条件的限制。此外,利用超分辨率 SERS 测量可以对原本不可分辨的等离子体热点进行非侵入式和无衍射限制的空间剖析。DNA-STROBE 的高度可编程和可重现性,加上其定量无标记分子读出,为跨越纳米光子学和生物医学科学光谱的应用提供了一个多功能平台。

相似文献

3
Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.等离子体纳米间隙增强拉曼散射与纳米粒子。
Acc Chem Res. 2016 Dec 20;49(12):2746-2755. doi: 10.1021/acs.accounts.6b00409. Epub 2016 Nov 8.

引用本文的文献

2
3
DNA Logic-Integrated Quantum Nanosensor for MicroRNA Diagnostics.用于微小RNA诊断的DNA逻辑集成量子纳米传感器
JACS Au. 2025 May 12;5(5):2123-2134. doi: 10.1021/jacsau.5c00058. eCollection 2025 May 26.
7
DNA-Patched Nanoparticles for the Self-Assembly of Colloidal Metamaterials.用于胶体超材料自组装的DNA修饰纳米颗粒
JACS Au. 2023 Mar 29;3(4):1176-1184. doi: 10.1021/jacsau.3c00013. eCollection 2023 Apr 24.
10
Surface-enhanced Raman scattering: An emerging tool for sensing cellular function.表面增强拉曼散射:一种用于检测细胞功能的新兴工具。
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Jul;14(4):e1802. doi: 10.1002/wnan.1802. Epub 2022 May 5.

本文引用的文献

5
Present and Future of Surface-Enhanced Raman Scattering.表面增强拉曼散射的现状与展望。
ACS Nano. 2020 Jan 28;14(1):28-117. doi: 10.1021/acsnano.9b04224. Epub 2019 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验