Suppr超能文献

视网膜神经节细胞轴突再生和生长锥导向中的线粒体动力学

Mitochondrial Dynamics in Retinal Ganglion Cell Axon Regeneration and Growth Cone Guidance.

作者信息

Lathrop Kira L, Steketee Michael B

机构信息

Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.

Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

J Ocul Biol. 2013 Sep 21;1(2):9.

Abstract

Failed axon regeneration and retinal ganglion cell (RGC) death after trauma or disease, including glaucomatous and mitochondrial optic neuropathies, are increasingly linked to mitochondrial dysfunction. Mitochondria are highly dynamic organelles whose size, organization, and function are regulated by a balance between mitochondrial fission and fusion. Mitochondria are ubiquitous in axonal growth cones both in vitro and in vivo and during development and regeneration. However, the roles that mitochondrial fission and fusion dynamics play in the growth cone during axon regeneration are largely unstudied. Here we discuss recent data suggesting mitochondria in the distal axon and growth cone play a central role in axon growth by integrating intrinsic axon growth states with signaling from extrinsic cues. Mitochondrial fission and fusion are intrinsically regulated in the distal axon in the growth cones of acutely purified embryonic and postnatal RGCs with differing intrinsic axon growth potentials. These differences in fission and fusion correlate with differences in mitochondrial bioenergetics; embryonic RGCs with high intrinsic axon growth potential rely more on glycolysis whereas RGCs with low intrinsic axon growth potential rely more on oxidative phosphorylation. Mitochondrial fission and fusion are also differentially modulated by KLFs that either promote or suppress intrinsic axon growth, and altering the balance between mitochondrial fission and fusion can differentially regulate axon growth rate and growth cone guidance responses to both inhibitory and permissive guidance cues.

摘要

创伤或疾病(包括青光眼性和线粒体性视神经病变)后轴突再生失败和视网膜神经节细胞(RGC)死亡,越来越多地与线粒体功能障碍相关。线粒体是高度动态的细胞器,其大小、组织和功能由线粒体分裂和融合之间的平衡调节。线粒体在体外和体内以及发育和再生过程中的轴突生长锥中普遍存在。然而,线粒体分裂和融合动力学在轴突再生过程中在生长锥中所起的作用在很大程度上尚未得到研究。在这里,我们讨论最近的数据,这些数据表明轴突远端和生长锥中的线粒体通过整合轴突内在生长状态与外在信号线索的信号,在轴突生长中起核心作用。线粒体分裂和融合在急性纯化的具有不同内在轴突生长潜力的胚胎和出生后RGCs生长锥的轴突远端受到内在调节。这些分裂和融合的差异与线粒体生物能量学的差异相关;具有高内在轴突生长潜力的胚胎RGCs更多地依赖糖酵解,而具有低内在轴突生长潜力的RGCs更多地依赖氧化磷酸化。线粒体分裂和融合也受到促进或抑制轴突内在生长的KLFs的差异调节,改变线粒体分裂和融合之间的平衡可以差异调节轴突生长速率以及生长锥对抑制性和允许性导向线索的导向反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ef/3946936/d0b88fccdf3e/nihms530918f1.jpg

相似文献

6
Exploring Optic Nerve Axon Regeneration.探索视神经轴突再生。
Curr Neuropharmacol. 2017;15(6):861-873. doi: 10.2174/1570159X14666161227150250.
10
Growth Cone Tctp Is Dynamically Regulated by Guidance Cues.生长锥Tctp受导向线索动态调控。
Front Mol Neurosci. 2018 Nov 6;11:399. doi: 10.3389/fnmol.2018.00399. eCollection 2018.

引用本文的文献

2
Mitochondrial function in spinal cord injury and regeneration.脊髓损伤与再生中的线粒体功能
Cell Mol Life Sci. 2022 Apr 13;79(5):239. doi: 10.1007/s00018-022-04261-x.
4
Lactate: More Than Merely a Metabolic Waste Product in the Inner Retina.乳酸:内视网膜中不仅仅是一种代谢废物。
Mol Neurobiol. 2020 Apr;57(4):2021-2037. doi: 10.1007/s12035-019-01863-8. Epub 2020 Jan 8.

本文引用的文献

5
Mitochondrial fission, fusion, and stress.线粒体的分裂、融合和应激。
Science. 2012 Aug 31;337(6098):1062-5. doi: 10.1126/science.1219855.
6
Metabolic differentiation in the embryonic retina.胚胎视网膜中的代谢分化。
Nat Cell Biol. 2012 Aug;14(8):859-64. doi: 10.1038/ncb2531. Epub 2012 Jul 1.
7
The axonal transport of mitochondria.线粒体的轴突运输。
J Cell Sci. 2012 May 1;125(Pt 9):2095-104. doi: 10.1242/jcs.053850. Epub 2012 May 22.
9
Bioenergetic role of mitochondrial fusion and fission.线粒体融合与分裂的生物能量学作用。
Biochim Biophys Acta. 2012 Oct;1817(10):1833-8. doi: 10.1016/j.bbabio.2012.02.033. Epub 2012 Mar 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验