Suppr超能文献

家猫中与主要组织相容性复合体(MHC)相关的微卫星标记的开发及其在评估家猫、猎豹和吉尔狮MHC多样性中的应用。

Development of MHC-Linked Microsatellite Markers in the Domestic Cat and Their Use to Evaluate MHC Diversity in Domestic Cats, Cheetahs, and Gir Lions.

作者信息

Morris Katrina M, Kirby Katherine, Beatty Julia A, Barrs Vanessa R, Cattley Sonia, David Victor, O'Brien Stephen J, Menotti-Raymond Marilyn, Belov Katherine

机构信息

From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien).

出版信息

J Hered. 2014 Jul-Aug;105(4):493-505. doi: 10.1093/jhered/esu017. Epub 2014 Mar 11.

Abstract

Diversity within the major histocompatibility complex (MHC) reflects the immunological fitness of a population. MHC-linked microsatellite markers provide a simple and an inexpensive method for studying MHC diversity in large-scale studies. We have developed 6 MHC-linked microsatellite markers in the domestic cat and used these, in conjunction with 5 neutral microsatellites, to assess MHC diversity in domestic mixed breed (n = 129) and purebred Burmese (n = 61) cat populations in Australia. The MHC of outbred Australian cats is polymorphic (average allelic richness = 8.52), whereas the Burmese population has significantly lower MHC diversity (average allelic richness = 6.81; P < 0.01). The MHC-linked microsatellites along with MHC cloning and sequencing demonstrated moderate MHC diversity in cheetahs (n = 13) and extremely low diversity in Gir lions (n = 13). Our MHC-linked microsatellite markers have potential future use in diversity and disease studies in other populations and breeds of cats as well as in wild felid species.

摘要

主要组织相容性复合体(MHC)内的多样性反映了一个种群的免疫适应性。与MHC连锁的微卫星标记为大规模研究MHC多样性提供了一种简单且廉价的方法。我们在家猫中开发了6个与MHC连锁的微卫星标记,并将这些标记与5个中性微卫星一起用于评估澳大利亚家猫混种(n = 129)和纯种缅甸猫(n = 61)群体中的MHC多样性。澳大利亚杂种猫的MHC具有多态性(平均等位基因丰富度 = 8.52),而缅甸猫群体的MHC多样性显著较低(平均等位基因丰富度 = 6.81;P < 0.01)。与MHC连锁的微卫星以及MHC克隆和测序表明,猎豹(n = 13)的MHC多样性中等,而吉尔狮(n = 13)的MHC多样性极低。我们与MHC连锁的微卫星标记在未来有可能用于其他猫种群和品种以及野生猫科动物的多样性和疾病研究。

相似文献

3
Genomic microsatellites as evolutionary chronometers: a test in wild cats.
Genome Res. 2002 Mar;12(3):414-23. doi: 10.1101/gr.185702.
4
NONDOMESTIC FELID BLOOD PHENOTYPING, GENOTYPING, AND CROSSMATCHING.
J Zoo Wildl Med. 2024 Mar;55(1):143-154. doi: 10.1638/2023-0025.
5
Cheetah paradigm revisited: MHC diversity in the world's largest free-ranging population.
Mol Biol Evol. 2011 Apr;28(4):1455-68. doi: 10.1093/molbev/msq330. Epub 2010 Dec 23.
6
Lion (Panthera leo) and cheetah (Acinonyx jubatus) IFN-gamma sequences.
Vet Immunol Immunopathol. 2010 Apr 15;134(3-4):296-8. doi: 10.1016/j.vetimm.2009.10.001. Epub 2009 Oct 12.
7
9
A comparative survey of microsatellites among wild and domestic cat provides valuable resources for marker development.
Mol Biol Rep. 2019 Jun;46(3):3025-3033. doi: 10.1007/s11033-019-04739-1. Epub 2019 Mar 12.
10
Comparative Genomics of the Major Histocompatibility Complex (MHC) of Felids.
Front Genet. 2022 Mar 2;13:829891. doi: 10.3389/fgene.2022.829891. eCollection 2022.

引用本文的文献

2
Comparative Genomics of the Major Histocompatibility Complex (MHC) of Felids.
Front Genet. 2022 Mar 2;13:829891. doi: 10.3389/fgene.2022.829891. eCollection 2022.
4
Inter- and intrabreed diversity of the major histocompatibility complex (MHC) in primitive and draft horse breeds.
PLoS One. 2020 Feb 3;15(2):e0228658. doi: 10.1371/journal.pone.0228658. eCollection 2020.
5
MHC haplotype diversity in Persian Arabian horses determined using polymorphic microsatellites.
Immunogenetics. 2018 May;70(5):305-315. doi: 10.1007/s00251-017-1039-x. Epub 2017 Nov 23.

本文引用的文献

1
Genetic structure of mountain lion () populations in California.
Conserv Genet. 2003;4(3):353-366. doi: 10.1023/A:1024069014911.
2
CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.
Evolution. 1985 Jul;39(4):783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x.
3
Polymorphisms and tissue expression of the feline leukocyte antigen class I loci FLAI-E, FLAI-H, and FLAI-K.
Immunogenetics. 2013 Sep;65(9):675-89. doi: 10.1007/s00251-013-0711-z. Epub 2013 Jun 30.
4
Journal of heredity adopts joint data archiving policy.
J Hered. 2013 Jan-Feb;104(1):1. doi: 10.1093/jhered/ess137.
6
Diversity at the major histocompatibility complex Class II in the platypus, Ornithorhynchus anatinus.
J Hered. 2012 Jul;103(4):467-78. doi: 10.1093/jhered/ess012. Epub 2012 May 4.
7
8
The same ELA class II risk factors confer equine insect bite hypersensitivity in two distinct populations.
Immunogenetics. 2012 Mar;64(3):201-8. doi: 10.1007/s00251-011-0573-1. Epub 2011 Sep 23.
9
Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.
Mol Ecol Resour. 2010 May;10(3):564-7. doi: 10.1111/j.1755-0998.2010.02847.x. Epub 2010 Mar 1.
10
Cheetah paradigm revisited: MHC diversity in the world's largest free-ranging population.
Mol Biol Evol. 2011 Apr;28(4):1455-68. doi: 10.1093/molbev/msq330. Epub 2010 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验