Prahl Louis S, Castle Brian T, Gardner Melissa K, Odde David J
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, USA.
Methods Enzymol. 2014;540:35-52. doi: 10.1016/B978-0-12-397924-7.00003-0.
Microtubules are dynamic polymers of the cytoskeleton, which play important roles in cell division, polarization, and intracellular transport. Self-assembly of microtubule polymer from αβ-tubulin heterodimers is highly variable, with stochastic switching between alternate states of net growth and net shortening, a phenomenon known as dynamic instability. Microtubule tip structures are also variable and directly influence the kinetics of assembly and vice versa. TipTracker, a semiautomated, image processing-based tool, permits high spatial and temporal resolution measurements from fluorescence microscopy images (~10-40 nm, or 1-5 dimer lengths, at 1-10 Hz) with simultaneous tip structure estimation. We provide a walkthrough of the TipTracker code to demonstrate methods used to (1) fit the coordinates of the microtubule backbone; (2) track microtubule tip position; and (3) estimate tip structure from the spatial decay of the tip fluorescence distribution, discuss possible sources of error, and include an example protocol for nanometer-scale tip tracking in living cells. Additionally, we evaluate TipTracker's accuracy on simulated digital images and fixed microtubules to estimate accuracy under realistic imaging conditions. In summary, this chapter demonstrates the use of TipTracker in making robust, high-resolution measurements of microtubule tip dynamics and structures, facilitating quantitative investigations into nanoscale/molecular control of microtubule assembly. Although our primary focus is on microtubules, these methods are, in principle, suitable for other polymer structures, such as F-actin.
微管是细胞骨架的动态聚合物,在细胞分裂、极化和细胞内运输中发挥重要作用。由αβ-微管蛋白异二聚体自组装形成的微管聚合物具有高度变异性,在净生长和净缩短的交替状态之间随机切换,这种现象称为动态不稳定性。微管尖端结构也具有变异性,并直接影响组装动力学,反之亦然。TipTracker是一种基于图像处理的半自动工具,可通过荧光显微镜图像进行高空间和时间分辨率测量(在1-10 Hz时约为10-40 nm,或1-5个二聚体长度),同时估计尖端结构。我们提供TipTracker代码的详细讲解,以演示用于(1)拟合微管主干坐标;(2)跟踪微管尖端位置;以及(3)根据尖端荧光分布的空间衰减估计尖端结构的方法,讨论可能的误差来源,并包括一个在活细胞中进行纳米级尖端跟踪的示例方案。此外,我们在模拟数字图像和固定微管上评估TipTracker的准确性,以估计实际成像条件下的准确性。总之,本章展示了TipTracker在对微管尖端动力学和结构进行稳健、高分辨率测量中的应用,有助于对微管组装的纳米级/分子控制进行定量研究。虽然我们主要关注微管,但这些方法原则上适用于其他聚合物结构,如F-肌动蛋白。