Suppr超能文献

微管如何产生荧光斑点。

How microtubules get fluorescent speckles.

作者信息

Waterman-Storer C M, Salmon E D

机构信息

Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.

出版信息

Biophys J. 1998 Oct;75(4):2059-69. doi: 10.1016/S0006-3495(98)77648-9.

Abstract

The dynamics of microtubules in living cells can be seen by fluorescence microscopy when fluorescently labeled tubulin is microinjected into cells, mixing with the cellular tubulin pool and incorporating into microtubules. The subsequent fluorescence distribution along microtubules can appear "speckled" in high-resolution images obtained with a cooled CCD camera (Waterman-Storer and Salmon, 1997. J. Cell Biol. 139:417-434). In this paper we investigate the origins of these fluorescent speckles. In vivo microtubules exhibited a random pattern of speckles for different microtubules and different regions of an individual microtubule. The speckle pattern changed only after microtubule shortening and regrowth. Microtubules assembled from mixtures of labeled and unlabeled pure tubulin in vitro also exhibited fluorescent speckles, demonstrating that cellular factors or organelles do not contribute to the speckle pattern. Speckle contrast (measured as the standard deviation of fluorescence intensity along the microtubule divided by the mean fluorescence intensity) decreased as the fraction of labeled tubulin increased, and it was not altered by the binding of purified brain microtubule-associated proteins. Computer simulation of microtubule assembly with labeled and unlabeled tubulin showed that the speckle patterns can be explained solely by the stochastic nature of tubulin dimer association with a growing end. Speckle patterns can provide fiduciary marks in the microtubule lattice for motility studies or can be used to determine the fraction of labeled tubulin microinjected into living cells.

摘要

当将荧光标记的微管蛋白显微注射到细胞中,与细胞内的微管蛋白池混合并掺入微管时,通过荧光显微镜可以观察到活细胞中微管的动态变化。在使用冷却的电荷耦合器件(CCD)相机获得的高分辨率图像中,沿微管的后续荧光分布可能会呈现“斑点状”(沃特曼 - 斯托勒和萨尔蒙,1997年。《细胞生物学杂志》139:417 - 434)。在本文中,我们研究了这些荧光斑点的起源。在体内,不同的微管以及单个微管的不同区域呈现出随机的斑点模式。只有在微管缩短和重新生长后,斑点模式才会改变。在体外由标记和未标记的纯微管蛋白混合物组装而成的微管也呈现出荧光斑点,这表明细胞因子或细胞器对斑点模式没有影响。斑点对比度(通过沿微管的荧光强度标准差除以平均荧光强度来衡量)随着标记微管蛋白比例的增加而降低,并且它不会因纯化的脑微管相关蛋白的结合而改变。用标记和未标记的微管蛋白对微管组装进行计算机模拟表明,斑点模式可以仅由微管蛋白二聚体与生长末端结合的随机性来解释。斑点模式可为运动性研究在微管晶格中提供基准标记,或者可用于确定显微注射到活细胞中的标记微管蛋白的比例。

相似文献

1
How microtubules get fluorescent speckles.
Biophys J. 1998 Oct;75(4):2059-69. doi: 10.1016/S0006-3495(98)77648-9.
2
Fluorescent speckle microscopy of microtubules: how low can you go?
FASEB J. 1999 Dec;13 Suppl 2:S225-30. doi: 10.1096/fasebj.13.9002.s225.
4
How we discovered fluorescent speckle microscopy.
Mol Biol Cell. 2011 Nov;22(21):3940-2. doi: 10.1091/mbc.E11-07-0646.
5
Mechanism and dynamics of breakage of fluorescent microtubules.
Biophys J. 2006 Mar 15;90(6):2093-8. doi: 10.1529/biophysj.105.071209. Epub 2005 Dec 30.
6
Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells.
Curr Biol. 1998 Nov 5;8(22):1227-30. doi: 10.1016/s0960-9822(07)00515-5.
7
Diffusion approximation of the stochastic process of microtubule assembly.
Bull Math Biol. 2002 Mar;64(2):213-38. doi: 10.1006/bulm.2001.0265.

引用本文的文献

1
Spatiotemporal fluctuations in fluorescence intensity of rhodamine phalloidin-labeled actin filaments.
J Biol Chem. 2025 Jun 24;301(8):110417. doi: 10.1016/j.jbc.2025.110417.
2
Cytoplasmic flow is a cell size sensor that scales anaphase.
Nat Cell Biol. 2025 Feb;27(2):273-282. doi: 10.1038/s41556-024-01605-6. Epub 2025 Jan 31.
3
Dissipation and energy propagation across scales in an active cytoskeletal material.
Proc Natl Acad Sci U S A. 2023 Apr 4;120(14):e2207662120. doi: 10.1073/pnas.2207662120. Epub 2023 Mar 31.
4
Length-dependent poleward flux of sister kinetochore fibers promotes chromosome alignment.
Cell Rep. 2022 Aug 2;40(5):111169. doi: 10.1016/j.celrep.2022.111169.
5
Profilin choreographs actin and microtubules in cells and cancer.
Int Rev Cell Mol Biol. 2020;355:155-204. doi: 10.1016/bs.ircmb.2020.05.005. Epub 2020 Jul 16.
6
Accelerated actin filament polymerization from microtubule plus ends.
Science. 2016 May 20;352(6288):1004-9. doi: 10.1126/science.aaf1709.
7
Neurodegeneration and microtubule dynamics: death by a thousand cuts.
Front Cell Neurosci. 2015 Sep 9;9:343. doi: 10.3389/fncel.2015.00343. eCollection 2015.
8
Dynamics and organization of cortical microtubules as revealed by superresolution structured illumination microscopy.
Plant Physiol. 2014 May;165(1):129-48. doi: 10.1104/pp.114.238477. Epub 2014 Mar 31.
9
Xenopus cytoplasmic linker-associated protein 1 (XCLASP1) promotes axon elongation and advance of pioneer microtubules.
Mol Biol Cell. 2013 May;24(10):1544-58. doi: 10.1091/mbc.E12-08-0573. Epub 2013 Mar 20.
10
Microtubule Tip Tracking and Tip Structures at the Nanometer Scale Using Digital Fluorescence Microscopy.
Cell Mol Bioeng. 2011 Jun;4(2):192-204. doi: 10.1007/s12195-010-0155-6.

本文引用的文献

1
2
Microtubule polymerization dynamics.
Annu Rev Cell Dev Biol. 1997;13:83-117. doi: 10.1146/annurev.cellbio.13.1.83.
4
Microtubule release from the centrosome.
Proc Natl Acad Sci U S A. 1997 May 13;94(10):5078-83. doi: 10.1073/pnas.94.10.5078.
5
Microtubule assembly in clarified Xenopus egg extracts.
Cell Motil Cytoskeleton. 1997;36(1):1-11. doi: 10.1002/(SICI)1097-0169(1997)36:1<1::AID-CM1>3.0.CO;2-E.
6
Force generation by microtubule assembly/disassembly in mitosis and related movements.
Mol Biol Cell. 1995 Dec;6(12):1619-40. doi: 10.1091/mbc.6.12.1619.
7
Real time imaging of single fluorophores on moving actin with an epifluorescence microscope.
Biophys J. 1995 Aug;69(2):323-8. doi: 10.1016/S0006-3495(95)79937-4.
10
Superresolution three-dimensional images of fluorescence in cells with minimal light exposure.
Science. 1995 Jun 9;268(5216):1483-7. doi: 10.1126/science.7770772.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验