Suppr超能文献

抑制性鸟苷酸交换因子磷酸化在酵母极性回路中提供负反馈。

Inhibitory GEF phosphorylation provides negative feedback in the yeast polarity circuit.

作者信息

Kuo Chun-Chen, Savage Natasha S, Chen Hsin, Wu Chi-Fang, Zyla Trevin R, Lew Daniel J

机构信息

Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.

Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.

出版信息

Curr Biol. 2014 Mar 31;24(7):753-9. doi: 10.1016/j.cub.2014.02.024. Epub 2014 Mar 13.

Abstract

Cell polarity is critical for the form and function of many cell types. During polarity establishment, cells define a cortical "front" that behaves differently from the rest of the cortex. The front accumulates high levels of the active form of a polarity-determining Rho-family GTPase (Cdc42, Rac, or Rop) that then orients cytoskeletal elements through various effectors to generate the polarized morphology appropriate to the particular cell type [1, 2]. GTPase accumulation is thought to involve positive feedback, such that active GTPase promotes further delivery and/or activation of more GTPase in its vicinity [3]. Recent studies suggest that once a front forms, the concentration of polarity factors at the front can increase and decrease periodically, first clustering the factors at the cortex and then dispersing them back to the cytoplasm [4-7]. Such oscillatory behavior implies the presence of negative feedback in the polarity circuit [8], but the mechanism of negative feedback was not known. Here we show that, in the budding yeast Saccharomyces cerevisiae, the catalytic activity of the Cdc42-directed GEF is inhibited by Cdc42-stimulated effector kinases, thus providing negative feedback. We further show that replacing the GEF with a phosphosite mutant GEF abolishes oscillations and leads to the accumulation of excess GTP-Cdc42 and other polarity factors at the front. These findings reveal a mechanism for negative feedback and suggest that the function of negative feedback via GEF inhibition is to buffer the level of Cdc42 at the polarity site.

摘要

细胞极性对于许多细胞类型的形态和功能至关重要。在极性建立过程中,细胞定义了一个与皮质其他部分行为不同的皮质“前端”。前端积累高水平的极性决定Rho家族GTP酶(Cdc42、Rac或Rop)的活性形式,然后通过各种效应器定向细胞骨架元件,以产生适合特定细胞类型的极化形态[1,2]。GTP酶的积累被认为涉及正反馈,即活性GTP酶促进其附近更多GTP酶的进一步递送和/或激活[3]。最近的研究表明,一旦前端形成,前端极性因子的浓度会周期性地增加和减少,首先将这些因子聚集在皮质,然后将它们分散回细胞质[4-7]。这种振荡行为意味着极性回路中存在负反馈[8],但负反馈的机制尚不清楚。在这里,我们表明,在出芽酵母酿酒酵母中,Cdc42指导的鸟嘌呤核苷酸交换因子(GEF)的催化活性受到Cdc42刺激的效应激酶的抑制,从而提供负反馈。我们进一步表明,用磷酸化位点突变的GEF取代GEF会消除振荡,并导致前端积累过量的GTP-Cdc42和其他极性因子。这些发现揭示了一种负反馈机制,并表明通过抑制GEF实现负反馈的功能是缓冲极性位点处Cdc42的水平。

相似文献

引用本文的文献

1
Negative feedback equalizes polarity sites in a multi-budding yeast.负反馈使多芽殖酵母中的极性位点均等化。
Curr Biol. 2025 Jul 7;35(13):3022-3034.e4. doi: 10.1016/j.cub.2025.05.011. Epub 2025 Jun 6.
2
Oscillatory dynamics of Rac1 activity in Dictyostelium discoideum amoebae.盘基网柄菌变形虫中Rac1活性的振荡动力学
PLoS Comput Biol. 2024 Dec 9;20(12):e1012025. doi: 10.1371/journal.pcbi.1012025. eCollection 2024 Dec.
5
Patterning of the cell cortex by Rho GTPases.Rho GTPases 对细胞皮层的模式化作用。
Nat Rev Mol Cell Biol. 2024 Apr;25(4):290-308. doi: 10.1038/s41580-023-00682-z. Epub 2024 Jan 3.
10
Orientation of Cell Polarity by Chemical Gradients.细胞极性的化学梯度导向。
Annu Rev Biophys. 2022 May 9;51:431-451. doi: 10.1146/annurev-biophys-110821-071250. Epub 2022 Feb 7.

本文引用的文献

7
Mechanistic mathematical model of polarity in yeast.酵母极性的机制数学模型。
Mol Biol Cell. 2012 May;23(10):1998-2013. doi: 10.1091/mbc.E11-10-0837. Epub 2012 Mar 21.
9
Symmetry breaking and the establishment of cell polarity in budding yeast.出芽酵母中对称性的破坏和细胞极性的建立。
Curr Opin Genet Dev. 2011 Dec;21(6):740-6. doi: 10.1016/j.gde.2011.09.007. Epub 2011 Sep 28.
10
Ultrasensitivity in the Regulation of Cdc25C by Cdk1.Cdk1 对 Cdc25C 调控的超敏性
Mol Cell. 2011 Feb 4;41(3):263-74. doi: 10.1016/j.molcel.2011.01.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验