Suppr超能文献

开发用于从电子健康记录中确定他汀类药物暴露时间的可重复使用逻辑。

Development of reusable logic for determination of statin exposure-time from electronic health records.

作者信息

Miller Aaron W, McCarty Catherine A, Broeckel Ulrich, Hytopoulos Vangelis, Cross Deanna S

机构信息

Biomedical Informatics Research Center, Marshfield Clinic Research Foundation, 1000 North Oak Avenue, Marshfield, WI 54449, USA.

Essentia Institute of Rural Health, 502 East Second Street, Duluth, MN 55805, USA.

出版信息

J Biomed Inform. 2014 Jun;49:206-12. doi: 10.1016/j.jbi.2014.02.014. Epub 2014 Mar 15.

Abstract

OBJECTIVE

We aim to quantify HMG-CoA reductase inhibitor (statin) prescriber-intended exposure-time using a generalizable algorithm that interrogates data stored in the electronic health record (EHR).

MATERIALS AND METHODS

This study was conducted using the Marshfield Clinic (MC) Personalized Medicine Research Project (PMRP) a central Wisconsin-based population and biobank with, on average, 30 years of electronic health data available in the independently-developed MC Cattails MD EHR. Individuals with evidence of statin exposure were identified from the electronic records, and manual chart abstraction of all mentions of prescribed statins was completed. We then performed electronic chart abstraction of prescriber-intended exposure time for statins, using previously identified logic to capture pill-splitting events, normalizing dosages to atorvastatin-equivalent dose. Four models using iterative training sets were tested to capture statin end-dates. Calculated cumulative provider-intended exposures were compared to manually abstracted gold-standard measures of ordered statin prescriptions, and aggregate model results (totals) for training and validation populations were compared. The most successful model was the one with the smallest discordance between modeled and manually abstracted Atorvastatin 10mg/year Equivalents (AEs).

RESULTS

Of the approximately 20,000 patients enrolled in the PMRP, 6243 were identified with statin exposure during the study period (1997-2011), 59.8% of whom had been prescribed multiple statins over an average of approximately 11 years. When the best-fit algorithm was implemented and validated by manual chart review for the statin-ordered population, it was found to capture 95.9% of the correlation between calculated and expected statin provider-intended exposure time for a random validation set, and the best-fit model was able to predict intended statin exposure to within a standard deviation of 2.6 AEs, with a standard error of +0.23 AEs.

CONCLUSION

We demonstrate that normalized provider-intended statin exposure time can be estimated using a combination of structured clinical data sources, including a medications ordering system and a clinical appointment coordination system, supplemented with text data from clinical notes.

摘要

目的

我们旨在使用一种可推广的算法来量化HMG-CoA还原酶抑制剂(他汀类药物)处方医生预期的暴露时间,该算法可查询存储在电子健康记录(EHR)中的数据。

材料与方法

本研究使用了马什菲尔德诊所(MC)个性化医学研究项目(PMRP),这是一个位于威斯康星州中部的人群和生物样本库,在独立开发的MC Cattails MD EHR中平均有30年的电子健康数据。从电子记录中识别出有他汀类药物暴露证据的个体,并完成对所有处方他汀类药物提及的手动病历摘要。然后,我们使用先前确定的逻辑对他汀类药物处方医生预期的暴露时间进行电子病历摘要,以捕捉药物分割事件,将剂量标准化为阿托伐他汀等效剂量。测试了使用迭代训练集的四种模型以捕捉他汀类药物的结束日期。将计算出的累积医生预期暴露量与手动摘要的他汀类药物处方的金标准测量值进行比较,并比较训练和验证人群的总体模型结果(总数)。最成功的模型是在建模的和手动摘要的阿托伐他汀10mg/年等效物(AE)之间差异最小的模型。

结果

在参与PMRP的约20000名患者中,有6243名在研究期间(1997 - 2011年)被确定有他汀类药物暴露,其中59.8%的患者在平均约11年的时间里被开了多种他汀类药物。当通过对他汀类药物处方人群进行手动病历审查来实施和验证最佳拟合算法时,发现它在随机验证集中捕捉到了计算出的和预期的他汀类药物医生预期暴露时间之间95.9%的相关性,并且最佳拟合模型能够将预期的他汀类药物暴露预测在2.6 AE的标准差范围内,标准误差为+0.23 AE。

结论

我们证明,使用结构化临床数据源(包括药物订购系统和临床预约协调系统)的组合,并辅以临床笔记中的文本数据,可以估计标准化的医生预期他汀类药物暴露时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3227/4327888/c6d30f408ec8/nihms-580929-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验