Suppr超能文献

S.T.O.N.E. 评分:一种新的评估工具,可根据术前影像学特征预测输尿管镜取石术的结石清除率。

The S.T.O.N.E. Score: a new assessment tool to predict stone free rates in ureteroscopy from pre-operative radiological features.

机构信息

Department of Urology, Denver Health Medical Center, Denver, CO, USA and Department of Urology, University of Colorado, Aurora, CO, USA.

Department of Urology, University of Colorado, Aurora, CO, USA.

出版信息

Int Braz J Urol. 2014 Jan-Feb;40(1):23-9. doi: 10.1590/S1677-5538.IBJU.2014.01.04.

Abstract

OBJECTIVE

To develop a user friendly system (S.T.O.N.E. Score) to quantify and describe stone characteristics provided by computed axial tomography scan to predict ureteroscopy outcomes and to evaluate the characteristics that are thought to affect stone free rates.

MATERIALS AND METHODS

The S.T.O.N.E. score consists of 5 stone characteristics: (S) ize, (T)opography (location of stone), (O)bstruction, (N)umber of stones present, and (E)valuation of Hounsfield Units. Each component is scored on a 1-3 point scale. The S.T.O.N.E. Score was applied to 200 rigid and flexible ureteroscopies performed at our institution. A logistic model was applied to evaluate our data for stone free rates (SFR).

RESULTS

SFR were found to be correlated to S.T.O.N.E. Score. As S.T.O.N.E. Score increased, the SFR decreased with a logical regression trend (p < 0.001). The logistic model found was SFR=1/(1+e^(-z)), where z=7.02-0.57•Score with an area under the curve of 0.764. A S.T.O.N.E. Score ≤ 9 points obtains stone free rates > 90% and typically falls off by 10% per point thereafter.

CONCLUSIONS

The S.T.O.N.E. Score is a novel assessment tool to predict SFR in patients who require URS for the surgical therapy of ureteral and renal stone disease. The features of S.T.O.N.E. are relevant in predicting SFR with URS. Size, location, and degree of hydronephrosis were statistically significant factors in multivariate analysis. The S.T.O.N.E. Score establishes the framework for future analysis of the treatment of urolithiasis.

摘要

目的

开发一种用户友好的系统(S.T.O.N.E. 评分),以量化和描述 CT 扫描提供的结石特征,预测输尿管镜检查的结果,并评估被认为影响结石清除率的特征。

材料和方法

S.T.O.N.E. 评分由 5 个结石特征组成:(S)大小、(T)地形(结石位置)、(O)梗阻、(N)存在的结石数量和(E)Hounsfield 单位评估。每个组成部分的评分范围为 1-3 分。S.T.O.N.E. 评分应用于我们机构进行的 200 例刚性和软性输尿管镜检查。应用逻辑模型评估我们的数据以获得结石清除率(SFR)。

结果

发现 SFR 与 S.T.O.N.E. 评分相关。随着 S.T.O.N.E. 评分的增加,SFR 呈逻辑回归趋势下降(p < 0.001)。逻辑模型发现 SFR=1/(1+e^(-z)),其中 z=7.02-0.57•Score,曲线下面积为 0.764。S.T.O.N.E. 评分≤9 分的结石清除率>90%,此后每增加 1 分下降 10%。

结论

S.T.O.N.E. 评分是一种预测需要 URS 治疗输尿管和肾结石疾病的患者 SFR 的新型评估工具。S.T.O.N.E. 的特征与 URS 预测 SFR 相关。大小、位置和肾积水程度是多变量分析中的统计学显著因素。S.T.O.N.E. 评分为分析治疗尿石症的未来奠定了框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验